二叉树任意两个结点最长距离

本文介绍了如何求解二叉树中两个节点的最大距离,关键在于考虑三种可能的情况:节点同时在左子树、同时在右子树,以及分别位于左右子树。通过递归计算左右子树的最远距离和高度,取三者中的最大值作为答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    给定一棵二叉树,求出树中两个结点距离的最大值。

    首先明确距离最大的两个结点出现位置:1,同时在根结点的左子树中;2,同时在根结点的右子树中;3,左右子树中各有一个结点。

    图一  第一二种情况            图二  第三种情况              图三  属于第三种情况               图四  高度等于距离

 

    假设我们分别得到了根结点左子树中两个结点最长距离,右子树中两个结点最长距离(这是求整棵树中两个结点最长距离的子问题罢了,既然程序能够求

二叉树中,一条路径可以从任意一个节点开始,沿着其左右子树的某个分支一直走到远的叶子节点。为了找到长的路径,我们需要考虑两个关键点: 1. 先序遍历意味着我们会先访问根节点,然后遍历左子树,后右子树。这意味着我们首先会确定从当前节点到叶子的大长度。 2. 我们需要维护两个信息:当前路径的长度(即已走过节点的数量),以及从根节点到当前节点长路径长度。 算法步骤如下: 1. 定义一个辅助函数`longestPathHelper(node)`,它接受一个节点作为输入,返回经过这个节点形成的长路径长度。 - 如果节点为空,返回0。 - 计算以当前节点为结束点的长路径长度(通过递归地计算左右子树)。 - 更新长路径,取当前节点值加上左子树和右子树中长路径中的较大者,如果当前节点值本身大于等于大路径长度,也需要更新大路径。 2. 主函数`longestPath(root)`,从根节点开始调用辅助函数,并记录结果。 - 初始化长路径为0。 - 调用`longestPathHelper(root)`, 并将结果存储在变量`maxPathLength`中。 ```python def longestPathHelper(node): if not node: return 0 left = longestPathHelper(node.left) right = longestPathHelper(node.right) # 更新长路径 max_path_here = 1 + max(left, right) # 加上当前节点 global_max_path = max(max_path_here, max_path_here + left + right) # 取较大值 return max_path_here def longestPath(root): global_max_path = longestPathHelper(root) return global_max_path # 使用时,传入二叉树的根节点即可 root = ... # 根据实际的二叉树构建节点 print("长路径长度:", longestPath(root)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值