Pandas基础(一)

文章介绍了Pandas与Numpy在数据处理上的差异,Pandas适合表格和混杂数据,而Numpy适用于统一数值数组。展示了Pandas的Series和DataFrame数据结构,包括创建、属性访问、切片操作和类似字典的访问方式。还提及了Series的常用函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas是基于numpy数组结构的,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的,比较契统计分析中的表结构,而numpy更适合处理统一的数值数组数据。

import numpy as np
import pandas as pd
chengji=[['', '期末', '期末'], ['张三', 50, 80], ['李四', 60, 90], ['王老五', 70, 89]]
chengji_array=np.array(chengji)
print(chengji,'\n')
print(chengji_array,'\n')
dic={ '期中':[50,60,70], '期末':[80,90,89] }
chengji_dataframe=pd.DataFrame(dic, index=['张三', '李四', '王老五'])
print(chengji_dataframe)

output:
[['', '期末', '期末'], ['张三', 50, 80], ['李四', 60, 90], ['王老五', 70, 89]] 

[['' '期末' '期末']
 ['张三' '50' '80']
 ['李四' '60' '90']
 ['王老五' '70' '89']] 

     期中  期末
张三   50  80
李四   60  90
王老五  70  89

Process finished with exit code 0

Pandas数据结构:

1.Series(一维数据),索引+一维数组

2.DataFrame(多维数据),行列索引+多维数组

1.Series相关内容

import numpy as np
import pandas as pd
s1=pd.Series(np.arange(3),np.arange(1,4))
print(s1,'\n')  #pd.Series(obj,index,dtype)
s2=pd.Series({'a':100,'b':150})
print(s2,'\n')
##############Series对象的属性##################
print('values:',s2.values)
print('index:',s2.index)
print('s2的形状:',s2.shape)
print('s2的元素数量:',s2.size)
print('s2的维度:',s2.ndim)
###############Series对象的切片操作##############
print('s2中a的值:',s2['a'])
print('s2中a,b的值:','\n',s2['a':'b'])  #中间用冒号隔开!
print('s2中前两行的数据:','\n',s2[0:2])

output:
1    0
2    1
3    2
dtype: int32 

a    100
b    150
dtype: int64 

values: [100 150]
index: Index(['a', 'b'], dtype='object')
s2的形状: (2,)
s2的元素数量: 2
s2的维度: 1
s2中a的值: 100
s2中a,b的值: 
 a    100
b    150
dtype: int64
s2中前两行的数据: 
 a    100
b    150
dtype: int64

Process finished with exit code 0

Series的操作-类似字典

◆通过自定义索引访问

◆保留字in操作:判定给定的索引值是否在索引序列中

◆使用.get()方法:类似于字典中的get方法

import pandas as pd
b=pd.Series({'math':99,'eng':98,'chinese':97})
print(b)
print('b同学的数学成绩:',b['math'])
print('eng' in b)
print('b同学的语文成绩:',b.get('chinese'))
print('b同学的体育成绩:',b.get('PE',100))

output:
math       99
eng        98
chinese    97
dtype: int64
b同学的数学成绩: 99
True
b同学的语文成绩: 97
b同学的体育成绩: 100

Process finished with exit code 0

Series常用函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值