【AI大模型前沿】DAMO GRAPE:阿里达摩院与浙江肿瘤医院联合打造的早期胃癌识别AI模型

系列篇章💥

No.文章
1【AI大模型前沿】深度剖析瑞智病理大模型 RuiPath:如何革新癌症病理诊断技术
2【AI大模型前沿】清华大学 CLAMP-3:多模态技术引领音乐检索新潮流
3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
4【AI大模型前沿】阿里 QwQ-32B:320 亿参数推理大模型,性能比肩 DeepSeek-R1,免费开源
5【AI大模型前沿】TRELLIS:微软、清华、中科大联合推出的高质量3D生成模型
6【AI大模型前沿】Migician:清华、北大、华科联手打造的多图像定位大模型,一键解决安防监控与自动驾驶难题
7【AI大模型前沿】DeepSeek-V3-0324:AI 模型的全面升级与技术突破
8【AI大模型前沿】BioMedGPT-R1:清华联合水木分子打造的多模态生物医药大模型,开启智能研发新纪元
9【AI大模型前沿】DiffRhythm:西北工业大学打造的10秒铸就完整歌曲的AI歌曲生成模型
10【AI大模型前沿】R1-Omni:阿里开源全模态情感识别与强化学习的创新结合
11【AI大模型前沿】Qwen2.5-Omni:阿里巴巴的多模态大模型,实现看、听、说、写一体化
12【AI大模型前沿】SmolDocling:256M参数的轻量级多模态文档处理利器,10分钟搞定百页PDF
13【AI大模型前沿】Stable Virtual Camera:Stability AI 推出的2D图像转3D视频模型,一键生成沉浸式视频
14【AI大模型前沿】阿里 Qwen3 震撼开源,模型新王诞生,开启全球大模型新纪元
15【AI大模型前沿】InternVL:OpenGVLab开源多模态大模型,解锁视觉问答与多语言翻译的全能应用图鉴
16【AI大模型前沿】Fin-R1:上海财经大学联合财跃星辰推出的金融推理大模型,凭7B参数拿下评测第二,离行业第一仅差3分
17【AI大模型前沿】Med-R1:基于强化学习的医疗视觉语言模型,突破跨模态医学推理的普适性
18【AI大模型前沿】Baichuan-M1-14B:百川智能推出专为医疗优化的开源大语言模型
19【AI大模型前沿】一键生成宫崎骏动画风,EasyControl Ghibli 让照片秒变吉卜力艺术品
20【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90%
21【AI大模型前沿】F5R-TTS:腾讯推出TTS领域的新王者,又快又准又自然,零样本语音克隆新高度
22【AI大模型前沿】MiniMind-V:低成本打造超小多模态视觉语言模型(仅需1.3元人民币和1小时)
23【AI大模型前沿】MoCha:端到端对话角色视频生成模型、电影级对话角色合成黑科技、重新定义动画创作
24【AI大模型前沿】HuatuoGPT-o1-7B:中英文双语医学推理,打破语言障碍的AI大模型
25【AI大模型前沿】MedReason:大规模医学推理数据集、借用知识图谱将大模型打造成“医术”专家
26【AI大模型前沿】SkyReels-V2:昆仑万维开源的无限时长电影生成模型,开启视频生成新纪元
27【AI大模型前沿】Dia:Nari Labs开源16亿参数TTS模型,只需文本输入,生成媲美真人对话的语音
28【AI大模型前沿】阿里巴巴开源LHM:单图生成可动画3D人体模型,开启3D建模新纪元
29【AI大模型前沿】TinyLLaVA-Video-R1:北航开源视频推理模型、小尺寸大智慧、参数少一半,性能翻一番
30【AI大模型前沿】TTRL:测试时强化学习,开启无标签数据推理新篇章
31【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper
32【AI大模型前沿】DianJin-R1:阿里云通义点金联合苏大推出的金融推理增强大模型
33【AI大模型前沿】VITA-Audio:腾讯开源的高效语音交互多模态大语言模型
34【AI大模型前沿】Multiverse:全球首个AI多人游戏世界模型,低成本高效率新突破
35【AI大模型前沿】Seed1.5-VL:多模态理解的效率革新者,以小博大,性能惊艳
36【AI大模型前沿】ViLAMP:蚂蚁集团和人民大学联手打造的长视频理解利器,单卡处理3小时视频
37【AI大模型前沿】Muyan-TTS:开源零样本语音合成模型、0.33秒极速生成播客级语音、小白也能玩转AI配音
38【AI大模型前沿】Dolphin:字节跳动开源文档解析大模型,轻量级、高效、多格式,开启文档处理新时代
39【AI大模型前沿】ChatTS:字节跳动联合清华大学开源、多模态时序大模型助力时序数据对话与推理
40【AI大模型前沿】Index-AniSora:B站开源的动漫视频生成模型,助力高效创作
41【AI大模型前沿】RelightVid:上海 AI Lab联合复旦等高校推出的视频重照明模型
42【AI大模型前沿】BAGEL:字节跳动开源、多模态大模型的创新突破与实践指南
43【AI大模型前沿】Matrix-Game:昆仑万维开源大模型,一键生成你的专属虚拟世界
44【AI大模型前沿】Pixel Reasoner:滑铁卢联合港科大等高校推出的视觉语言模型,助力视觉推理新突破
45【AI大模型前沿】CoGenAV:多模态语音表征新范式、通义联合深技大打造、噪声环境WER降低70%+
46【AI大模型前沿】Ming-Lite-Omni:蚂蚁集团开源的统一多模态大模型的创新实践
47【AI大模型前沿】DeepEyes:小红书与西安交大联合打造的多模态深度思考模型
48【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
49【AI大模型前沿】MiniCPM 4.0:面壁智能开源的极致高效端侧大模型(小版本、低消耗、220倍极致提速)
50【AI大模型前沿】SmolVLA:Hugging Face开源的轻量级视觉-语言-行动机器人模型
51【AI大模型前沿】Time-R1:伊利诺伊大学香槟分校开源的时间推理语言模型、实现过去→未来全链路推演
52【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型
53【AI大模型前沿】GLM-4.5:智谱打造的开源SOTA模型,推理、代码与智能体能力融合先锋
54【AI大模型前沿】百度飞桨PaddleOCR 3.0开源发布,支持多语言、手写体识别,赋能智能文档处理
55【AI大模型前沿】Stream-Omni:多模态交互的“黄金三角”——视觉、语音、文本的完美融合
56【AI大模型前沿】Vui:Fluxions-AI开源的轻量级语音对话模型,开启自然语音交互新时代
57【AI大模型前沿】腾讯AI Lab开源的SongGeneration:音乐生成大模型的技术探索与实践
58【AI大模型前沿】Osmosis-Structure-0.6B:小型语言模型在结构化信息提取中的突破
59【AI大模型前沿】Kwai Keye-VL:颠覆认知!国产多模态大模型突然发布,视频理解能力堪比人类
60【AI大模型前沿】Nanonets-OCR-s:从学术论文到法律合同,智能识别公式、签名、表格与图像
61【AI大模型前沿】OmniAvatar:浙大联合阿里打造的音频驱动全身视频生成模型
62【AI大模型前沿】DAMO GRAPE:阿里达摩院与浙江肿瘤医院联合打造的早期胃癌识别AI模型


前言

在医学领域,早期癌症筛查对于提高患者生存率至关重要。胃癌作为一种常见的恶性肿瘤,其早期诊断一直面临着诸多挑战。传统的胃癌筛查方法如胃镜检查存在一定的局限性,如侵入性强、患者依从性低等。而人工智能技术的快速发展为这一问题提供了新的解决方案。本文将详细介绍由阿里达摩院与浙江肿瘤医院联合推出的DAMO GRAPE项目,这是一款基于非增强CT影像识别早期胃癌的AI模型,有望为胃癌的早期筛查和诊断带来革命性的变化。

一、项目概述

DAMO GRAPE是由浙江省肿瘤医院与阿里巴巴达摩院联合推出的一款全球首个基于平扫CT识别早期胃癌的AI模型。该模型突破了传统影像学的限制,通过深度学习技术分析非增强CT影像,能够高效地筛查出早期胃癌病灶,其在大规模临床研究中展现出85.1%的敏感性和96.8%的特异性,显著优于人类放射科医生,且能提前6个月发现早期胃癌病灶,为胃癌的早期诊断和治疗提供了新的高效手段,有望大幅提高胃癌患者的生存率。
在这里插入图片描述

二、技术原理

(一)深度学习算法

DAMO GRAPE的核心是深度学习算法。它利用大量的胃癌和非胃癌的CT影像数据进行训练,让模型能够学习到胃癌病灶的特征和模式。这种算法能够自动从海量数据中提取有价值的信息,从而实现对胃癌的精准识别。

(二)多中心数据集

该模型基于全球规模最大的胃癌平扫CT影像多中心数据集进行训练,涵盖了6720例来自不同地区、不同设备的数据。这种多中心的数据集使得模型能够接触到各种不同的情况,从而提高了模型的泛化能力,使其在面对不同环境和设备产生的影像时都能保持较高的准确性和稳定性。

(三)图像分割与分类

DAMO GRAPE采用了联合分割和分类网络的方式。模型首先对CT影像进行胃部区域的分割,精准地定位胃部位置,然后对分割后的区域进行肿瘤检测和分类,最终输出胃癌风险评分和分割掩码。这种分割与分类相结合的方法,不仅能够明确指出病灶的位置,还能对胃癌的可能性进行量化评估,为医生提供了更全面的诊断信息。

(四)特征提取与识别

模型能够分析CT影像中的微小变化和模式,如胃壁厚度、胃黏膜异质性等。这些细微的特征往往是早期胃癌的重要标志,但传统影像学方法很难察觉。DAMO GRAPE通过深度学习算法对这些特征进行提取和识别,从而突破了传统影像学的限制,能够更早地发现胃癌病灶,为早期治疗争取宝贵时间。

(五)Grad-CAM可视化

为了增强模型的可解释性,DAMO GRAPE还引入了基于Grad-CAM技术的可视化功能。通过这种技术,医生可以直观地看到模型在判断过程中所依据的影像特征和区域,从而更好地理解模型的决策过程,增强了医生对模型结果的信任度,也便于在实际应用中与医生的临床经验相结合,做出更准确的诊断。

在这里插入图片描述

三、主要功能

(一)早期胃癌筛查

DAMO GRAPE的主要功能之一就是基于分析非增强CT影像来识别早期胃癌病灶,从而显著提高胃癌的早期检出率。这对于提高胃癌患者的生存率至关重要,因为早期胃癌的治疗效果和预后都远远优于晚期胃癌。

(二)辅助诊断

该模型能够为影像医生提供辅助诊断支持,帮助他们更准确地识别胃癌病灶,从而提高诊断的准确性和效率,减少漏诊和误诊的可能性。在实际的医疗场景中,医生可以将DAMO GRAPE的分析结果作为重要参考,结合自己的专业知识和经验,做出更可靠的诊断决策。

(三)风险评估

DAMO GRAPE还可以对患者进行胃癌风险评估,识别出高风险人群。这对于医疗资源的合理分配和患者的进一步检查具有重要意义。通过提前筛选出高风险人群,可以更有针对性地进行胃镜检查等确诊手段,提高医疗资源的利用效率,同时也让患者能够更早地接受进一步的检查和治疗。

(四)早期预警

在患者尚未出现明显症状时,DAMO GRAPE能够提前发现潜在的胃癌病灶,为早期治疗争取宝贵时间。这种早期预警功能对于提高患者的生存率和生活质量具有不可估量的价值,因为早期治疗可以大大降低胃癌的死亡率和并发症的发生率。

四、应用场景

(一)大规模人群筛查

在体检中心和基层医院,DAMO GRAPE可以对大量人群进行胃癌初筛,提前发现潜在患者,提高早期胃癌检出率。这对于提高公众的健康水平和降低胃癌的发病率具有重要意义,尤其是在胃癌高发地区,可以作为一种有效的预防手段。

(二)辅助医生诊断

DAMO GRAPE为放射科医生提供辅助诊断工具,帮助他们更准确地识别胃癌病灶,减少漏诊和误诊,提升诊断效率。在实际的医疗工作中,医生可以借助DAMO GRAPE的力量,更好地应对复杂的病例,提高诊断的准确性和可靠性。

(三)高风险人群监测

针对胃癌高发地区居民以及有家族史、慢性胃病等高危人群,DAMO GRAPE可以进行定期筛查,提前发现病变。这种针对性的监测能够更好地保护高风险人群的健康,及时发现潜在的胃癌病灶,为早期治疗提供机会。

(四)早期预警干预

在患者无明显症状时,DAMO GRAPE能够提前发现潜在胃癌病灶,为早期治疗争取时间,提高患者生存率和生活质量。这种早期预警功能可以为患者带来更多的治疗选择和更好的预后,同时也减轻了医疗系统的负担。

(五)医疗资源优化

在分级诊疗体系中,DAMO GRAPE能够合理分配医疗资源,提高医疗效率。通过精准识别高风险人群和早期病灶,可以将有限的医疗资源集中在最需要的患者身上,提高医疗资源的利用效率,同时也为医学研究和教学提供了数据和工具支持。

五、结语

DAMO GRAPE作为一款基于非增强CT影像识别早期胃癌的AI模型,具有重要的临床应用价值和广阔的发展前景。它通过深度学习技术突破了传统影像学的限制,能够高效地筛查出早期胃癌病灶,为胃癌的早期诊断和治疗提供了新的手段。在实际应用中,DAMO GRAPE不仅可以提高胃癌的早期检出率,还能辅助医生进行更准确的诊断,优化医疗资源的分配。随着人工智能技术的不断发展和医疗数据的不断积累,相信DAMO GRAPE将在未来的医疗领域发挥更大的作用,为人类的健康事业做出更大的贡献。

技术论文:https://www.nature.com/articles/s41591-025-03785-6


在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值