[leetcode]502. IPO

本文介绍了一种算法,用于解决LeetCode IPO问题。该问题要求从一系列项目中选择最多k个项目来最大化初始资本W。文章提供了两种解决方案,一种使用multiset和priority_queue实现,另一种仅使用priority_queue实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://leetcode.com/problems/ipo/description/

Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Capital, LeetCode would like to work on some projects to increase its capital before the IPO. Since it has limited resources, it can only finish at most k distinct projects before the IPO. Help LeetCode design the best way to maximize its total capital after finishing at most k distinct projects.

You are given several projects. For each project i, it has a pure profit Pi and a minimum capital of Ci is needed to start the corresponding project. Initially, you have W capital. When you finish a project, you will obtain its pure profit and the profit will be added to your total capital.

To sum up, pick a list of at most k distinct projects from given projects to maximize your final capital, and output your final maximized capital.

Example 1:

Input: k=2, W=0, Profits=[1,2,3], Capital=[0,1,1].

Output: 4

Explanation: Since your initial capital is 0, you can only start the project indexed 0.
             After finishing it you will obtain profit 1 and your capital becomes 1.
             With capital 1, you can either start the project indexed 1 or the project indexed 2.
             Since you can choose at most 2 projects, you need to finish the project indexed 2 to get the maximum capital.
             Therefore, output the final maximized capital, which is 0 + 1 + 3 = 4.

Note:

  1. You may assume all numbers in the input are non-negative integers.
  2. The length of Profits array and Capital array will not exceed 50,000.
  3. The answer is guaranteed to fit in a 32-bit signed integer.
class Solution {
public:
    struct Node {int profit, capital;};

    int findMaximizedCapital(int k, int W, vector<int>& Profits, vector<int>& Capital) {
        if(Profits.empty() || Capital.empty()) return W;
        vector<Node*> projects;
        for(int i = 0; i < Profits.size(); i++) 
            projects.push_back(new Node({Profits[i], Capital[i]}));
        multiset<int> pq;
        int l = k;
        sort(projects.begin(), projects.end(), [&](Node* n1, Node* n2) {return n1->capital < n2->capital;});
        for(auto start = projects.begin(); k > 0; k--) {
            for(; start != projects.end() && (*start)->capital <= W; start++) {
                pq.insert((*start)->profit);
                // 此行可以注释掉
                if(pq.size() > l) pq.erase(pq.begin()); 
            } 
            if(pq.empty()) break;
            W += *pq.rbegin();
            pq.erase(prev(pq.end()));
        }
        return W;
    }
};

  1. The more capital W you have now, the more maximum capital you will eventually earn.
  2. Working on any doable project with positive P[i] > 0 increases your capital W.
  3. Any project with P[i] = 0 is useless and should be filtered away immediately (note that the problem only guarantees all inputs non-negative).

Therefore, always work on the most profitable project P[i] first as long as it is doable until we reach maximum k projects or all doable projects are done.

The algorithm will be straightforward:

  1. At each stage, split projects into two categories:
    • "doables": ones with C[i] <= W (store P[i] in priority_queue<int> low)
    • "undoables": ones with C[i] > W (store (C[i], P[i]) in multiset<pair<int,int>> high)
  2. Work on most profitable project from low (low.top()) first, and update capital W += low.top().
  3. Move those previous undoables from high to doables low whose C[i] <= W.
  4. Repeat steps 2 and 3 until we reach maximum k projects or no more doable projects.

class Solution {
public:
    int findMaximizedCapital(int k, int W, vector<int>& P, vector<int>& C) {
        priority_queue<int> low;      // P[i]'s within current W
        multiset<pair<int,int>> high; // (C[i],P[i])'s' outside current W

        for (int i = 0; i < P.size(); ++i) // initialize low and high
            if(P[i] > 0) if (C[i] <= W) low.push(P[i]); else high.emplace(C[i], P[i]);

        while (k-- && low.size()) {
            W += low.top(), low.pop(); // greedy to work on most profitable first
            for (auto i = high.begin(); high.size() && i->first <= W; i = high.erase(i)) low.push(i->second);
        }
        return W;
    }
};

### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值