numpy中矩阵去重、查询元素位置、累加

本文介绍了如何使用numpy进行矩阵去重,包括np.unique函数的应用,以及如何通过np.where找到特定元素的位置索引。重点展示了np.cumsum的累加操作实例,适合对numpy数组操作有深入理解的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy矩阵去重

np.unique(arr)

查找元素在numpy矩阵中的位置索引

np.where(y==2)

返回的是元组,如果是二维矩阵,返回的元组中包含两个arry,第一个表示横坐标,第二个表示纵坐标,如果该元素出现过很多次,所有位置信息都会被返回。

np.where(y==4)

(array([32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 34,
34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38,
38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39,
39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41,
41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43,
43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44,
44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45,
45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48,
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49,
49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49],
dtype=int64),
array([ 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7,
8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
dtype=int64))

累加np.cumsum

a=[1,2,3,4,5,6]
np.cumsum(a)

array([ 1, 3, 6, 10, 15, 21], dtype=int32)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小菜鸟moon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值