AcWing 树形DP相关问题 1073. 树的中心

本文介绍了一种求解树形结构中任意两点间最长路径的算法,通过递归方式计算每个节点到其子树中叶子节点的最大距离,并以此更新全局最长路径。适用于正数、负数或零权重的边。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

N = int(input())

link = {}
for i in range(1, N):
    a, b, w = map(int, input().split())
    if a not in link:
        link[a] = []
    if b not in link:
        link[b] = []

    link[a].append((b, w))
    link[b].append((a, w))

# 随便选一个节点作为树的根,递归算每个节点到以这个节点为根的子树上的叶子的
# 最大距离,向上一层返回该最大距离,上一层节点就可以根据其所有子树向其返回
# 的最大距离来组合出一条经过该节点中转的最长直径,用该直径的长度更新全局
# 的最大直径长度即可, 每个树上的节点都对应了一个以该节点中转的直径的集合
# 此算法那对于权值为正负零均可处理

ans = [0]  # 定义单独一个点也是有路径的,路径长度是1, 全局最大值就初始化为1


def dfs(root, prev=None):
    # 最大值和次大值
    max1, max2 = 0, 0 # 最大值和次大值初始值设置为0, 可以直接避免掉负边带来的负面影响,默认可以看做每个节点都连接了无数个隐性的空节点,且边全权为0
    for child, path_len in link[root]:
        if child == prev:
            continue

        max_len = dfs(child, root) + path_len
        if max_len > max1:
            max2 = max1
            max1 = max_len
        elif max_len > max2:
            max2 = max_len

    ans[0] = max(ans[0], max1 + max2)
    return max1


dfs(1)
print(ans[0])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值