人工智能AI对话的火爆,很大程度归功于Transformer模型理论的应用发展,openai的chatGPT3.5的成功出圈, 到后来openai的GPT4, GPT4o, 以及国内外各种大模型框架的雨后春笋的崛起。 像现在文生图、文生视频的火爆, 也离不开DiT(Diffusion transformer)理论的应用。
人工智能这2年发展非常快, 比拼的是 海量算力、 海量数据、资金财力。 虽然这些通用大语言模型展现出强大能力,但在实际应用中仍存在或多或少的问题,例如在准确性、知识更新速度和答案透明度方面,仍存在挑战。
从大模型厂家角度来说,举例openai,从GPT3.5传统的transformer架构升级到GPT4的MOE模型(Mixed Expert Models,混合专家模型), 我的猜测后续GPT4.5或GPT5至少有比较大的颠覆性创新才会出来,像现在的GPT4o顶多算上小小的优化。MOE模型具体可以看我这篇文章【AI+大模型】从媲美GPT4能力的国产DeepSeek-V2浅聊MOE模型。
从大模型应用开发者角度来说,我们针对已有大模型,不管openai的GPT4还是国内通义千问2.5, 从自身性价比的角度选择合适的大模型, 然后做对应的优化方案。 比如我们现在看到所有通用大模型平台都有各种各样的智能体,其实是基于Prompt Engineering(提示词工程)来让普通人直接应用,得到更满意的结果。比如我