一、分发饼干
思路:贪心算法局部最优思想。这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
过程:先将饼干数组和小孩数组排序。然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。
技巧:用了一个start来控制饼干数组的遍历,遍历饼干并没有再起一个for循环,而是采用自减的方式,这也是常用的技巧。
解法:
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int res = 0;
int start = s.length - 1; // 饼干数组的下标
for (int i = g.length - 1; i >= 0; i++) { // 遍历胃口
if (start >= 0 && g[i] <= s[start]){ // 遍历饼干
res++;
start--;
}
}
return res;
}
二、摆动序列
思路:贪心。分别使用prediff和curdiff 来记录前一节点差和当前节点差。
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
注意:注意每次平坡的情况
情况一:上下坡中有平坡
情况二:数组首尾两端
情况三:单调坡中有平坡
解法:
public int wiggleMaxLength(int[] nums) {
// 若<=1 直接返回
if (nums.length <= 1)
return nums.length;
int res = 1;
int prediff = 0; //前一对的差值
int curdiff = 0; // 现在的差值
for (int i = 1; i < nums.length; i++){
// 每次都要更新curdiff
curdiff = nums[i] - nums[i - 1];
// 有= 一是说明prediff从未更改过,二是用来判断上下坡中有平坡的情况
if ((prediff <= 0 && curdiff > 0) || (prediff >= 0 && curdiff < 0)){
res ++;
prediff = curdiff;
}
}
return res;
}
三、最大子数组和
思路:贪心。用result记录最大子序和区间和
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”.
注意:count只要连续和还是正数就会 对后面的元素 起到增大总和的作用。除非count<=0,
解法:
class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 1){
return nums[0];
}
int sum = Integer.MIN_VALUE;
int count = 0;
for (int i = 0; i < nums.length; i++){
count += nums[i];
sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)
if (count <= 0){
count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
}
return sum;
}
}