跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!
代码随想录
LeetCode:122.买卖股票的最佳时机II
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
最大总利润为 4 。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0。
动态规划法:
dp[i][0]
表示第i
天持有股票时的最多现金,这里的持有并不是第i天买股票的意思,也可以是第i - 1
天买,或第i - 2
天买,然后一直持有到第i天dp[i][1]
表示第i天不持有股票时的最多现金
初始化:dp[0][0] = -prices[0]
,dp[0][1] = 0
递推公式:dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i])
,
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i])
- 和上一题只能买卖一次的区别:在于持有股票且是当天买的情况下,只能买一次的时候是:
0 - prices[i]
,能多次买的时候:dp[i - 1][1] - prices[i]
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][2];
// 持有股票的最大金额
dp[0][0] = -prices[0];
// 不持有股票的最大金额
dp[0][1] = 0;
for (int i = 1; i < prices.length; i++) {
// 持有股票:要么昨天就持有,要么昨天不持有且今天持有
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
// 不持有股票:要么昨天就不持有,要么今天卖出
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
// 肯定是不持有金额最多
return dp[prices.length - 1][1];
}
- 只要第二天的价格比第一天高那么就应该第一天买,然后第二天卖,如此往复,则利润最大
贪心解法:
public int maxProfit(int[] prices) {
int result = 0;
for (int i = 0; i < prices.length - 1; i++) {
if (prices[i + 1] > prices[i]) {
result += prices[i + 1] - prices[i];
}
}
return result;
}