跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!
代码随想录
LeetCode:1143.最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。
dp[i][j]
表示text1
中以0 - c1[i - 1]
结尾的字符数组和text2
中以0 - c2[j - 1]
结尾的字符数组中最长公共子序列的值为dp[i][j]
- 初始化:都初始化为
0
- 递推公式:如果
c1[i - 1] == c2[j - 1]
则dp[i][j] = dp[i - 1][j - 1] + 1;
,否则dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
public int longestCommonSubsequence(String text1, String text2) {
char[] c1 = text1.toCharArray();
char[] c2 = text2.toCharArray();
int[][] dp = new int[c1.length + 1][c2.length + 1];
for (int i = 1; i <= c1.length; i++) {
for (int j = 1; j <= c2.length; j++) {
if (c1[i - 1] == c2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[c1.length][c2.length];
}