Description
小火山和火山火山在一块玩跳子游戏。规则如下:
1:跳子的起始位置为0,棋盘大小从1到N
2:每次跳子跳k步。 例如当前位置为i, 那么下一步为i + k
3:跳子过程中,碰到1或N则往回跳。例如当前位置为4, N = 6, K = 5的
时候, 那么下次跳子, 应该是 5, 6, 5 ,4, 3。最后落在3的位置, 再一次
跳子为2 1 2 3 4。最后落在4的位置;
现在小火山想知道经过任意次跳子最后能否将这个棋盘上的每个数字都走过。
Input
输入第一行是一个整数T(T <= 20000), 表示一共有T组数据。
每一组数据都有两个整数N, K(1 <= K ,N <= 5000)
Output
对于每组数据,如果可以将这个棋盘上的每个数字都走过则输出"Yes", 否则输出"No"
Sample Input
2
6 4
2 1
Sample Output
No
Yes
这题居然和我们南阳oj 的一道题差不多,我也没有做到过,比赛的时候就一直想,找规律也没有找到 ,题解上说的很清楚:
如果k=1的话是1,2,3,4...n-1,n,n-1...3,2,1。可以看出这个周期是2*n-2,所以只要gcd(2*n-2, k)==1就是可以全部标记完的。因为走到一个走
过的并且方向一样并且没有标记全部的话就不可能能标记完了,所以要走2*n-2次没有重复位置和方向的,也就是gcd(2*n-2,k)==1.
过的并且方向一样并且没有标记全部的话就不可能能标记完了,所以要走2*n-2次没有重复位置和方向的,也就是gcd(2*n-2,k)==1.
#include<stdio.h>
#include<stack>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<queue>
#include<math.h>
#define LL long long
const int N=100005;
using namespace std;
int gcd(int a,int b)
{
if(b==0)
return a;
else return gcd(b,a%b);
}
int main()
{
int t,n,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
if(k==1||n==1)
printf("Yes\n");
else
{
n=2*n-2;
int m=gcd(n,k);
if(m==1)
{
printf("Yes\n");
}
else
{
printf("No\n");
}
}
}
return 0;
}