Spark实时(一):StructuredStreaming 介绍

文章目录

Structured Streaming 介绍

一、SparkStreaming实时数据处理痛点

1、复杂的编程模式

2、SparkStreaming处理实时数据只支持Processing Time

3、微批处理,延迟高

4、精准消费一次问题

二、StructuredStreaming架构与场景应用

三、​​​​​​​​​​​​​​StructuredStreaming 特点


Structured Streaming 介绍

一、SparkStreaming实时数据处理痛点

在Spark2.0之前版本中处理流式数据时使用SparkStreaming模块,SparkStreaming模块有一些痛点问题,问题如下:

1、复杂的编程模式

SparkStreaming编写代码是基于DStream进行,DStream底层是RDD操作,编程时需要编写很多DStream API非常不方便。由于不同开发者编码水平不同,导致不同人编

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lansonli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值