js float加法运算

本文介绍了一种通过JavaScript实现的精确浮点数加法函数。该方法通过计算小数位数并转换为整数运算的方式,有效解决了浮点数运算不精确的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   //float加法
    function FloatAdd(arg1,arg2){
        var r1,r2,m;
        try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
        try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
        m=Math.pow(10,Math.max(r1,r2));
        return parseInt(Math.round(arg1*m)+Math.round(arg2*m))/m;
    }

浮点数的加减法运算是计算机组成原理中的一个核心内容,涉及阶码对齐、尾数运算以及规格化等多个步骤。以下是浮点数加减法的基本规则和操作流程。 ### 1. 浮点数加减法的基本步骤 浮点数加减法运算通常包括以下几个关键步骤: #### (1) 对阶 在进行加减运算之前,两个浮点数的阶码必须一致。由于浮点数由阶码和尾数组成,若两者的阶码不同,则需将阶码较小的数的尾数右移,使其阶码与另一个数一致,从而实现对阶[^2]。 例如,在引用[2]中提到的例子中: - 给定浮点数 $ x = 2^{101} \times 0.11011011 $ - $ y = 2^{111} \times (-0.10101100) $ 由于 $ x $ 的阶码小于 $ y $ 的阶码,因此需要将 $ x $ 的尾数右移两位,并将其阶码增加到与 $ y $ 相同(即从 $ 2^{101} $ 增加到 $ 2^{111} $)。 #### (2) 尾数相加或相减 当两个浮点数的阶码一致后,接下来的操作是对其尾数进行加减运算。尾数的加减遵循定点数的补码运算规则,且通常使用双符号位表示以简化溢出检测过程[^2]。 在引用[2]的例子中,对阶后的 $ x $ 和 $ y $ 的尾数分别为: - $ x $ 的尾数为 $ 0.0011011011 $ - $ y $ 的尾数为 $ -0.1010110000 $ 通过补码加法计算其总和,最终得到结果的尾数。 #### (3) 规格化 尾数加减完成后,可能需要对结果进行规格化处理,确保其符合浮点数的标准形式。规格化的目的是保证尾数的最高有效位不为零,以充分利用尾数的存储空间并提高精度。 常见的规格化操作包括左规(尾数左移,阶码减少)和右规(尾数右移,阶码增加)。例如,如果尾数加减的结果为 $ 0.0110... $,则需要左移一位,使最高位变为 $ 0.1 $。 #### (4) 舍入处理 在规格化过程中,可能会出现超出尾数存储范围的低位数据。此时需要采用舍入规则(如截断、四舍五入等)来处理多余的部分,以尽量减少精度损失。 #### (5) 判溢出 最后,需要检查阶码是否溢出。如果阶码超过机器所能表示的最大值(上溢),则结果为无穷大;如果阶码低于最小值(下溢),则结果为零或极小值。 --- ### 2. 实例分析 以下是一个完整的浮点数加法示例(基于引用[2]的内容): #### 输入 - $ x = 2^{101} \times 0.11011011 $ - $ y = 2^{111} \times (-0.10101100) $ #### 步骤一:对阶 $ x $ 的阶码比 $ y $ 小 $ 2 $,因此 $ x $ 的尾数右移两位,阶码调整为 $ 2^{111} $,新的尾数为 $ 0.0011011011 $。 #### 步骤二:尾数加减 $ x $ 的尾数为 $ 0.0011011011 $,$ y $ 的尾数为 $ -0.1010110000 $。 通过补码加法计算两者之和: ```python result_mantissa = 0.0011011011 + (-0.1010110000) ``` 计算结果为 $ -0.0111010101 $。 #### 步骤三:规格化 该结果为负数,且最高有效位为 $ 0.0 $,不符合规格化要求。因此需要左移一位,得到 $ -0.1110101010 $,同时阶码减 $ 1 $,变为 $ 2^{110} $。 #### 步骤四:舍入处理 假设尾数只能保留 10 位,则结果的尾数应截断为 $ -0.1110101010 $。 #### 步骤五:判溢出 检查阶码是否在允许范围内,若无溢出,则最终结果为: $$ z = 2^{110} \times (-0.1110101010) $$ --- ### 3. 总结 浮点数的加减法运算主要包括对阶、尾数加减、规格化、舍入处理和溢出判断五个步骤。每一步都需要严格遵循计算机组成原理中的相关规则,以确保计算的准确性和效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值