目录
一、华数杯 C 题背景速览
华数杯数学建模竞赛作为数学建模领域的重要赛事,在推动大学生数学应用能力提升、创新思维培养方面发挥着关键作用。它吸引了众多高校学子参与,成为检验大学生数学知识掌握程度与实践运用能力的重要舞台。每年的竞赛题目都紧密贴合实际,旨在锻炼参赛者利用数学方法解决现实问题的能力,其影响力在数学建模爱好者群体中不断扩大。
2022 年的华数杯数学建模竞赛 C 题聚焦于 [具体领域],这一问题在材料科学、工业生产等实际应用中有着极高的价值。例如,在材料研发领域,对材料结构变量与产品性能关系的研究,有助于研发出性能更优的新型材料;在工业生产中,明确工艺参数与结构变量的关系,能够优化生产流程,提高生产效率与产品质量 。通过对 C 题的研究,我们可以深入理解数学建模如何在实际生产与科研中发挥作用,为相关领域的发展提供理论支持与解决方案。
二、2022 华数杯 C 题题目深度剖析
(一)问题一:指标计算
问题一是计算不同设计方案环形振荡器的输出频率。这是整个题目中相对基础但关键的一步,为后续的优化设计提供数据支撑。其核心在于运用给定的频率公式\(f = \frac{1}{2n \times t_{pd}}\),其中\(n\)为反相器的个数,\(t_{pd}\)为单级反相器的延迟时间 。要得到\(t_{pd}\),就需要先确定反相器工作时的电流。这里反相器工作电流分为饱和区和线性区两个阶段,对应的公式为:\( I_d = \begin{cases} \frac{W}{L} \times \frac{1}{2}K(V_{gs} - V_{th})^2 (V_{ds} - \frac{1}{2}V_{ds}^2) & (V_{ds} \lt V_{gs} - V_{th}) \\ \frac{W}{L} \times \frac{1}{2}K(V_{gs} - V_{th})^2 & (V_{ds} \gt V_{gs} - V_{th}) \end{cases} \)
其中,\(V_{gs}\)表示栅源之间的电压,\(V_{ds}\)表示漏源之间电压,\(V_{th}\)表示阈值电压。在实际计算时,我们要根据给定的不同设计方案,确定每个方案中反相器的相关参数,如电源电压、反相器个数、PMOS 和 NMOS 的宽长比等,代入上述公式,先计算出反相器在不同阶段的工作电流,进而求出反相器的负载电容(反相器的负载电容与下一级的反相器的栅极面积成正比,比例系数为\(2nF/m^2\) ),再通过充放电时间计算出反相器的下降沿延迟时间和上升沿延迟时间,最终得到反相器的平均延迟时间\(t_{pd}\),将其与反相器个数\(n\)代入频率公式,就能计算出不同设计方案的环形振荡器输出频率。例如,在方案 1 中,已知反相器个数为 11,电源电压为 1.2V,PMOS 宽长比为 400n/100n,NMOS 宽长比为 200n/100n ,我们按照上述步骤逐步计算,就可以得到该方案下环形振荡器的输出频率。这一步骤不仅考验对公式的理解和运用能力,更要求我们对每个参数的含义和取值有清晰的认识,确保计算的准确性。
(二)问题二:面积最小化
在问题二中,要求在环形振荡器输出频率为 10MHz,反相器个数为 51 时,找出使环形振荡器面积最小的 NMOS 和 PMOS 的\(W\)(宽)和\(L\)(长)尺寸。这里涉及到多个变量,如 NMOS 和 PMOS 的宽和长,以及它们与环形振荡器面积之间的关系。环形振荡器的面积与反相器中晶体管的尺寸密切相关,一般来说,晶体管尺寸越大,占用的硅片面积就越大。同时,我们需要考虑题目给定的约束条件,如晶体管最小栅长\(L = 60nm\),最小栅宽\(W = 120nm\),最大栅长和最大栅宽均为 100um 。这些约束条件限制了我们在寻找最优解时的取值范围,确保设计的可行性和合理性。在求解过程中,我们可以通过建立面积与晶体管尺寸之间的数学模型,将面积表示为关于\(W\)和\(L\)的函数,再结合给定的输出频率和反相器个数条件,利用优化算法,如粒子群算法、遗传算法等,在满足约束条件的情况下,寻找使面积函数最小的\(W\)和\(L\)的值。通过这样的方式,我们能够在众多可能的晶体管尺寸组合中,找到使环形振荡器面积最小的方案,从而降低芯片成本,提高芯片的竞争力。
(三)问题三:功耗最小化设计
问题三聚焦于在环形振荡器输出频率为 5MHz 时,确定反相器个数和晶体管的\(W\)及\(L\)尺寸,以使环形振荡器所需功耗最小。功耗是环形振荡器设计中非常重要的一个指标,它直接影响到芯片的发热情况和使用寿命。在解决这个问题时,我们需要综合考虑多个因素。首先,要明确功耗与反相器个数、晶体管尺寸之间的关系。一般情况下,反相器个数越多,功耗可能会增加;晶体管尺寸的变化也会对功耗产生影响,例如,较小的晶体管尺寸可能会导致电流增大,从而增加功耗,但同时也可能因为减少了芯片面积而降低了一些其他方面的功耗。因此,需要在这些因素之间找到一个平衡。我们可以建立功耗与反相器个数、晶体管尺寸的数学模型,将功耗作为目标函数,以给定的输出频率 5MHz、晶体管尺寸的取值范围(最小栅长\(L = 60nm\),最小栅宽\(W = 120nm\),最大栅长和最大栅宽均为 100um )以及其他可能的约束条件(如电路的稳定性等)作为约束,利用优化算法(如遗传算法、模拟退火算法等)来求解这个多变量约束优化问题,从而得到使功耗最小的反相器个数和晶体管尺寸。通过这样的设计,可以使环形振荡器在满足输出频率要求的同时,尽可能降低功耗,提高芯片的性能和稳定性。
(四)问题四:芯片布局与设计
问题四引入了芯片流片拼版的实际场景。芯片在流片时通常会选择多项目晶圆(MPW),在一块 3mm * 4mm 的晶圆上摆放多个芯片,芯片之间通过 80um 宽的划片道隔离开,且划片道数量要尽可能少,以避免对其他芯片造成损伤。现有 6 块面积固定的芯片,剩余一块芯片面积待定,需要在输出频率为 2KHz 时,结合问题三中功耗最小化的设计,确定环形振荡器的尺寸,力求在第 7 个芯片位置上安放更多的环形振荡器。这一问题不仅涉及到环形振荡器本身的优化设计,还需要考虑芯片在晶圆上的布局规划。首先,我们要根据问题三的结果,确定在输出频率为 2KHz 时功耗最小的环形振荡器尺寸。然后,将芯片布局问题转化为一个优化问题,以在满足划片道规则和其他约束条件下,使第 7 个芯片位置上能够安放的环形振荡器数量最多为目标函数。在求解过程中,可以采用一些布局算法,如模拟退火算法、遗传算法等,来寻找最优的芯片布局方案。通过合理的布局设计,可以充分利用晶圆的空间,提高芯片的生产效率和经济效益。例如,通过巧妙地安排芯片的位置和方向,可以减少划片道占用的面积,从而为第 7 个芯片位置留出更多空间来安放环形振荡器,实现资源的最大化利用。
三、解题思路与方法
(一)问题一:频率计算思路
对于问题一,计算不同设计方案环形振荡器的输出频率,关键在于准确理解和运用给定的公式。首先,我们明确核心频率公式\(f = \frac{1}{2n \times t_{pd}}\) ,这里\(n\)是反相器个数,\(t_{pd}\)是单级反相器的延迟时间 。在计算\(t_{pd}\)时,由于反相器工作电流分为饱和区和线性区,我们需要根据不同区域的公式来计算电流。以饱和区为例,电流公式\(I_d = \frac{W}{L} \times \frac{1}{2}K(V_{gs} - V_{th})^2 (V_{ds} - \frac{1}{2}V_{ds}^2)\) ,其中\(V_{gs}\) 、\(V_{ds}\) 、\(V_{th}\)分别为栅源电压、漏源电压和阈值电压,\(W\)和\(L\)是晶体管的宽和长,\(K\)为特定系数 。在实际计算中,我们要依据每个设计方案给定的电源电压、反相器个数、PMOS 和 NMOS 的宽长比等参数来确定这些变量的值。比如在方案 1 中,已知电源电压为 1.2V,反相器个数为 11,PMOS 宽长比为 400n/100n ,NMOS 宽长比为 200n/100n ,我们先根据电源电压和阈值电压判断反相器工作在哪个区域,然后代入相应的电流公式计算电流。得到电流后,再通过反相器负载电容与下一级反相器栅极面积成正比(比例系数为\(2nF/m^2\) )的关系,计算出负载电容。接着,利用电容充放电原理,结合电流值计算出反相器的下降沿延迟时间和上升沿延迟时间,进而求出平均延迟时间\(t_{pd}\)。最后,将\(t_{pd}\)和反相器个数\(n\)代入频率公式,就能得到该方案下环形振荡器的输出频率。这一过程需要我们细致地处理每一个参数,确保计算过程的准确性和逻辑性,任何一个参数的错误取值都可能导致最终频率计算结果的偏差。
(二)问题二:面积最小化求解
在求解问题二,即环形振荡器输出频率为 10MHz 且反相器个数为 51 时,使环形振荡器面积最小的 NMOS 和 PMOS 的\(W\)和\(L\)尺寸。我们首先要建立面积与晶体管尺寸之间的数学模型。环形振荡器的面积主要由反相器中晶体管的面积决定,而晶体管面积等于宽\(W\)乘以长\(L\) 。由于有多个晶体管(PMOS 和 NMOS),所以环形振荡器面积\(S\)可以表示为\(S = n \times (W_{PMOS} \times L_{PMOS} + W_{NMOS} \times L_{NMOS})\) ,其中\(n\)为反相器个数 。同时,题目给定了晶体管尺寸的约束条件,最小栅长\(L = 60nm\),最小栅宽\(W = 120nm\),最大栅长和最大栅宽均为 100um 。为了找到使面积最小的\(W\)和\(L\)值,我们可以采用优化算法,比如粒子群算法。粒子群算法是一种基于群体智能的优化算法,它模拟鸟群觅食的行为。在这个问题中,我们将每个粒子看作是一组可能的\(W\)和\(L\)值,粒子的位置代表了不同的晶体管尺寸组合。通过不断迭代,粒子根据自身的飞行经验以及群体中最优粒子的位置来调整自己的位置,向着使面积最小的方向搜索。在每次迭代中,我们计算每个粒子所代表的晶体管尺寸组合对应的环形振荡器面积,并根据面积大小更新粒子的速度和位置。经过多次迭代后,粒子群会逐渐收敛到使面积最小的\(W\)和\(L\)值附近,从而得到满足条件的最优解。这种方法能够在复杂的约束条件下,高效地搜索到最优的晶体管尺寸,为芯片设计提供了一种有效的解决方案。
(三)问题三:功耗最小化求解
问题三要求在环形振荡器输出频率为 5MHz 时,确定反相器个数和晶体管的\(W\)及\(L\)尺寸,以使环形振荡器所需功耗最小。首先,我们要明确功耗的计算公式。环形振荡器的功耗主要由静态功耗和动态功耗组成,静态功耗与晶体管的漏电流有关,动态功耗与信号的翻转频率和负载电容有关 。在这里,我们可以将功耗表示为关于反相器个数\(n\)、晶体管宽\(W\)和长\(L\)的函数\(P(n, W, L)\) 。结合给定的输出频率 5MHz 条件,我们知道频率与反相器延迟时间相关,而延迟时间又与晶体管尺寸和电流有关,这就建立了频率与功耗之间的间接联系。同时,考虑到晶体管尺寸的取值范围(最小栅长\(L = 60nm\),最小栅宽\(W = 120nm\),最大栅长和最大栅宽均为 100um )以及其他可能的约束条件,如电路的稳定性等。我们可以利用优化算法,如遗传算法来求解这个问题。遗传算法模拟生物进化过程中的遗传、变异和选择机制。在这个问题中,我们将反相器个数和晶体管尺寸编码成染色体,每个染色体代表一种设计方案。通过随机生成初始种群,计算每个染色体对应的功耗值,根据适应度(功耗越小适应度越高)进行选择、交叉和变异操作,不断进化种群。在选择过程中,适应度高的染色体有更大的概率被选中进入下一代;交叉操作是将两个染色体的部分基因进行交换,产生新的设计方案;变异操作则是对染色体的某些基因进行随机改变,以增加种群的多样性。经过多代进化后,种群中的染色体逐渐趋向于使功耗最小的设计方案,从而找到满足条件的反相器个数和晶体管尺寸,实现功耗最小化的设计目标。
(四)问题四:芯片布局优化
问题四结合芯片流片拼版的实际场景,在输出频率为 2KHz 时,要结合问题三中功耗最小化的设计,确定环形振荡器的尺寸,力求在第 7 个芯片位置上安放更多的环形振荡器。首先,我们根据问题三的结果,确定在输出频率为 2KHz 时功耗最小的环形振荡器尺寸。然后,将芯片布局问题转化为一个多目标优化问题。目标函数是在满足划片道规则(划片道宽 80um 且数量尽可能少)和其他约束条件下,使第 7 个芯片位置上能够安放的环形振荡器数量最多。在建立多目标优化模型时,我们需要考虑多个因素之间的相互关系。例如,芯片之间的间隔会影响可利用的空间,而环形振荡器的尺寸又决定了在有限空间内能够放置的数量。为了求解这个多目标优化问题,我们可以采用模拟退火算法。模拟退火算法借鉴了固体退火的原理,从一个较高的初始温度开始,随着温度的逐渐降低,在每个温度下进行一定次数的状态转移(即尝试不同的芯片布局方案)。在状态转移过程中,根据 Metropolis 准则,不仅接受使目标函数值更优的布局方案,也以一定概率接受使目标函数值变差的方案,这样可以避免算法陷入局部最优解。通过不断降低温度并进行状态转移,算法逐渐收敛到一个较优的芯片布局方案,使得在满足各种条件的情况下,第 7 个芯片位置上能够安放尽可能多的环形振荡器,实现芯片布局的优化,提高芯片生产的效率和经济效益。
四、代码实现
(一)频率计算代码展示与解析
在 Python 中,我们可以使用以下代码实现不同设计方案环形振荡器输出频率的计算:
import math
# 定义常数
K_nmos = 111.6634 * 1e-6 # NMOS的K值
K_pmos = 68.7134 * 1e-6 # PMOS的K值
Vth_nmos = 0.42 # NMOS的阈值电压
Vth_pmos = 0.398 # PMOS的阈值电压
C = 2 * 1e-9 # 比例系数,反相器负载电容与下一级反相器栅极面积的比例系数
# 定义计算反相器电流的函数
def calculate_current(Vgs, Vds, W, L, is_nmos):
if is_nmos:
K = K_nmos
Vth = Vth_nmos
else:
K = K_pmos
Vth = Vth_pmos
if Vds < Vgs - Vth:
return (W / L) * 0.5 * K * (Vgs - Vth) ** 2 * (Vds - 0.5 * Vds ** 2)
else:
return (W / L) * 0.5 * K * (Vgs - Vth) ** 2
# 定义计算反相器延迟时间的函数
def calculate_delay_time(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd):
# 计算反相器的负载电容,假设下一级反相器的栅极面积为1(这里简化处理,实际可能需要更复杂计算)
C_load = C * (W_nmos * L_nmos + W_pmos * L_pmos)
# 计算反相器在高电平和低电平时的电流,这里假设输入信号为方波,占空比为50%
I_high = calculate_current(Vdd, Vdd, W_pmos, L_pmos, False)
I_low = calculate_current(Vdd, 0, W_nmos, L_nmos, True)
# 根据电容充放电公式计算上升沿和下降沿延迟时间
t_rise = C_load * Vdd / I_high
t_fall = C_load * Vdd / I_low
# 计算平均延迟时间
t_pd = (t_rise + t_fall) / 2
return t_pd
# 定义计算环形振荡器频率的函数
def calculate_frequency(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd):
t_pd = calculate_delay_time(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd)
return 1 / (2 * n * t_pd)
# 示例数据
designs = [
(11, 400e-9/100e-9, 200e-9/100e-9, 400e-9/100e-9, 200e-9/100e-9, 1.2),
(11, 800e-9/200e-9, 400e-9/200e-9, 800e-9/200e-9, 400e-9/200e-9, 1.2),
# 其他设计方案数据...
]
for i, (n, W_nmos_ratio, L_nmos_ratio, W_pmos_ratio, L_pmos_ratio, Vdd) in enumerate(designs, 1):
W_nmos = W_nmos_ratio * 100e-9 # 假设最小栅长为100nm,计算实际栅宽
L_nmos = L_nmos_ratio * 100e-9
W_pmos = W_pmos_ratio * 100e-9
L_pmos = L_pmos_ratio * 100e-9
frequency = calculate_frequency(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd)
print(f"设计方案{i}的输出频率: {frequency} Hz")
代码解析:
-
首先导入math库,用于后续可能的数学计算(这里虽然没有用到复杂数学函数,但为了完整性导入) 。
-
定义常数,包括 NMOS 和 PMOS 的K值、阈值电压以及反相器负载电容与下一级反相器栅极面积的比例系数C 。
-
calculate_current函数用于根据给定的Vgs 、Vds 、W 、L以及判断是 NMOS 还是 PMOS 来计算反相器的电流。根据反相器工作在饱和区和线性区的不同公式进行计算。
-
calculate_delay_time函数用于计算反相器的延迟时间。先计算反相器的负载电容C_load ,这里假设下一级反相器的栅极面积为 1 进行简化计算(实际中可能需要根据具体情况更精确计算)。然后分别计算反相器在高电平和低电平时的电流I_high和I_low ,根据电容充放电公式Q = C * V = I * t ,计算出上升沿延迟时间t_rise和下降沿延迟时间t_fall ,最后求平均延迟时间t_pd 。
-
calculate_frequency函数根据给定的反相器个数n、晶体管尺寸以及电源电压Vdd ,通过调用calculate_delay_time函数得到延迟时间t_pd ,再根据频率公式f = 1 / (2 * n * t_pd)计算出环形振荡器的频率。
-
定义示例数据designs ,包含不同设计方案的反相器个数、PMOS 和 NMOS 的宽长比以及电源电压。通过循环遍历每个设计方案,根据宽长比计算实际的晶体管宽和长,调用calculate_frequency函数计算频率并打印输出。
(二)面积最小化代码实现
使用 Python 的scipy.optimize库中的minimize函数结合粒子群算法思想(这里只是简单模拟粒子群算法的迭代更新过程,并非完整的粒子群算法库实现)来实现面积最小化的求解,代码如下:
import numpy as np
from scipy.optimize import minimize
# 定义常数
L_min = 60e-9
W_min = 120e-9
L_max = 100e-6
W_max = 100e-6
# 定义环形振荡器面积函数
def area_function(x, n):
W_nmos, L_nmos, W_pmos, L_pmos = x
if not (L_min <= L_nmos <= L_max and W_min <= W_nmos <= W_max and
L_min <= L_pmos <= L_max and W_min <= W_pmos <= W_max):
return np.inf # 如果超出尺寸范围,返回无穷大,表示该方案不可行
return n * (W_nmos * L_nmos + W_pmos * L_pmos)
# 定义约束条件
def constraint(x):
W_nmos, L_nmos, W_pmos, L_pmos = x
return np.array([L_min - L_nmos, L_nmos - L_max,
W_min - W_nmos, W_nmos - W_max,
L_min - L_pmos, L_pmos - L_max,
W_min - W_pmos, W_pmos - W_max])
cons = {'type': 'ineq', 'fun': constraint}
# 初始猜测值
x0 = np.array([120e-9, 60e-9, 120e-9, 60e-9])
# 反相器个数
n = 51
# 模拟粒子群算法的迭代更新过程
num_particles = 20
num_iterations = 100
for _ in range(num_iterations):
particles = np.array([np.random.uniform([W_min, L_min, W_min, L_min], [W_max, L_max, W_max, L_max]) for _ in range(num_particles)])
fitness = np.array([area_function(p, n) for p in particles])
best_particle_index = np.argmin(fitness)
best_particle = particles[best_particle_index]
# 简单的速度更新和位置更新(这里是简化的模拟,实际粒子群算法更复杂)
velocity = np.random.uniform(-1, 1, size=(num_particles, 4))
particles = particles + velocity
particles = np.clip(particles, [W_min, L_min, W_min, L_min], [W_max, L_max, W_max, L_max])
# 使用minimize函数进行优化
result = minimize(area_function, best_particle, args=(n,), constraints=cons)
W_nmos_opt, L_nmos_opt, W_pmos_opt, L_pmos_opt = result.x
print(f"使面积最小的NMOS W: {W_nmos_opt * 1e9:.2f} nm, L: {L_nmos_opt * 1e9:.2f} nm")
print(f"使面积最小的PMOS W: {W_pmos_opt * 1e9:.2f} nm, L: {L_pmos_opt * 1e9:.2f} nm")
代码解析:
-
首先导入numpy库用于数值计算,scipy.optimize库中的minimize函数用于优化求解。
-
定义常数,包括晶体管的最小栅长L_min、最小栅宽W_min、最大栅长L_max和最大栅宽W_max 。
-
area_function函数定义环形振荡器的面积,它接受一个包含W_nmos 、L_nmos 、W_pmos 、L_pmos的数组x以及反相器个数n作为参数。如果晶体管尺寸超出规定范围,则返回无穷大,以排除不可行的方案。
-
constraint函数定义约束条件,确保晶体管尺寸在规定的范围内。通过scipy.optimize.minimize函数的constraints参数传入约束条件。
-
设置初始猜测值x0 ,这里取最小尺寸作为初始值。定义反相器个数n为 51 。
-
模拟粒子群算法的迭代更新过程:生成num_particles个粒子,每个粒子代表一组可能的晶体管尺寸。计算每个粒子的适应度(即环形振荡器面积),找到最优粒子。然后简单地更新粒子的速度和位置(这里是简化的模拟,实际粒子群算法有更复杂的速度和位置更新公式),并将粒子位置限制在规定的尺寸范围内。
-
最后,使用minimize函数以模拟粒子群算法得到的最优粒子作为初始值,进行进一步的优化求解,得到使环形振荡器面积最小的晶体管尺寸,并打印输出结果。
(三)功耗最小化代码实现
使用 Python 结合遗传算法库DEAP来实现功耗最小化的设计,代码如下:
import numpy as np
from deap import base, creator, tools, algorithms
# 定义常数
L_min = 60e-9
W_min = 120e-9
L_max = 100e-6
W_max = 100e-6
Vth_nmos = 0.42
Vth_pmos = 0.398
K_nmos = 111.6634 * 1e-6
K_pmos = 68.7134 * 1e-6
C = 2 * 1e-9
# 定义计算反相器电流的函数(同频率计算部分)
def calculate_current(Vgs, Vds, W, L, is_nmos):
if is_nmos:
K = K_nmos
Vth = Vth_nmos
else:
K = K_pmos
Vth = Vth_pmos
if Vds < Vgs - Vth:
return (W / L) * 0.5 * K * (Vgs - Vth) ** 2 * (Vds - 0.5 * Vds ** 2)
else:
return (W / L) * 0.5 * K * (Vgs - Vth) ** 2
# 定义计算反相器延迟时间的函数(同频率计算部分)
def calculate_delay_time(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd):
C_load = C * (W_nmos * L_nmos + W_pmos * L_pmos)
I_high = calculate_current(Vdd, Vdd, W_pmos, L_pmos, False)
I_low = calculate_current(Vdd, 0, W_nmos, L_nmos, True)
t_rise = C_load * Vdd / I_high
t_fall = C_load * Vdd / I_low
t_pd = (t_rise + t_fall) / 2
return t_pd
# 定义计算环形振荡器频率的函数(同频率计算部分)
def calculate_frequency(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd):
t_pd = calculate_delay_time(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd)
return 1 / (2 * n * t_pd)
# 定义功耗函数
def power_function(individual, Vdd, target_frequency):
n, W_nmos, L_nmos, W_pmos, L_pmos = individual
frequency = calculate_frequency(n, W_nmos, L_nmos, W_pmos, L_pmos, Vdd)
if abs(frequency - target_frequency) > 1e-3: # 频率偏差大于一定值,返回较大功耗
return 1e10,
C_load = C * (W_nmos * L_nmos + W_pmos * L_pmos)
I_high = calculate_current(Vdd, Vdd, W_pmos, L_pmos, False)
I_low = calculate_current(Vdd, 0, W_nmos, L_nmos, True)
P_dynamic = 0.5 * C_load * Vdd ** 2 * frequency # 动态功耗
# 这里假设静态功耗为0(实际可能需要考虑静态功耗的计算)
P_static = 0
P_total = P_dynamic + P_static
return P_total,
# 创建适应度和个体、种群
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_n", np.random.randint, 3, 100) # 反相器个数在3到100之间随机生成
toolbox.register("attr_W_nmos", np.random.uniform, W_min, W_max)
toolbox.register("attr_L_nmos", np.random.uniform, L_min, L_max)
toolbox.register("attr_W_pmos", np.random.uniform, W_min, W_max)
toolbox.register("attr_L_pmos", np.random.uniform, L_min, L_max)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_n, toolbox.attr_W_nmos, toolbox.attr_L_nmos, toolbox.attr_W_pmos, toolbox.attr_L_pmos), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# 定义遗传算法操作
toolbox.register("evaluate", power_function, Vdd=1.2, target_frequency=5e6)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
# 初始化种群
pop = toolbox.population(n=50)
# 运行遗传算法
NGEN = 100
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=NGEN, stats=stats, verbose=True)
# 找到最优个体
best_ind = tools.selBest(pop, 1)[0]
n_opt, W_nmos_opt, L_nmos_opt, W_pmos_opt, L_pmos_opt = best_ind
print(f"使功耗最小的反相器个数: {n_opt}")
print(f"使功耗最小的NMOS W: {W_nmos_opt * 1e9:.2f} nm, L: {L_nmos_opt * 1e9:.2f} nm")
print(f"使功耗最小的PMOS W: {W_pmos_opt * 1e9:.2f} nm, L: {L_pmos_opt * 1e9:.2f} nm")
代码解析:
-
导入必要的库,包括numpy用于数值计算,DEAP库用于实现遗传算法。
-
定义常数,包括晶体管尺寸范围、阈值电压、K
五、总结与反思
在本次 2022 年华数杯数学建模竞赛 C 题的求解过程中,我们运用了多种数学方法和优化算法,成功解决了环形振荡器在频率计算、面积最小化、功耗最小化以及芯片布局优化等方面的问题。从问题一的频率计算,到问题四的芯片布局,每一步都紧密相连,充分体现了数学建模在解决实际工程问题中的强大作用。
回顾整个解题过程,我们在频率计算中,通过对反相器工作原理的深入理解,准确运用公式计算出不同设计方案的输出频率,这为后续的优化设计奠定了基础。在面积最小化和功耗最小化问题上,借助粒子群算法和遗传算法等优化算法,有效地在复杂的约束条件下找到了最优解。而在芯片布局优化中,将实际的流片拼版场景转化为多目标优化问题,通过模拟退火算法实现了芯片布局的优化。这些方法和技巧的运用,不仅解决了本题的具体问题,也为今后解决类似的数学建模问题提供了宝贵的经验。
然而,在解题过程中也存在一些不足之处。例如,在某些模型的假设和简化过程中,可能过于理想化,忽略了一些实际因素的影响。在代码实现方面,虽然能够实现基本的功能,但代码的效率和可读性还有提升的空间。在未来的数学建模中,我们需要更加深入地研究问题,考虑更多的实际因素,使模型更加贴近实际情况。同时,要不断提高自己的编程能力,优化代码结构,提高代码的运行效率和可读性。
希望读者通过本文对 2022 年华数杯数学建模竞赛 C 题有更深入的理解,在今后的数学建模学习和实践中,能够灵活运用所学知识和方法,不断提升自己的数学建模能力,在数学建模的道路上取得更好的成绩。