Harr特征

Harr特征是一种用于物体识别的数字图像特征,尤其在人脸识别中广泛应用。通过计算检测窗口中相邻矩形的像素和差值,形成弱分类器,并通过级联多个此类特征构成强分类器。积分图的引入极大地提升了特征计算的效率,使得图像的任意区域像素和可以在常数时间内快速获取。Harr特征包括边缘、线性、中心和对角线特征,而积分图则是一种描述全局信息的矩阵表示,通过一次遍历即可求得图像像素和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

## 定义 ##
1. 哈尔特征(Haar-like features) 是用于物体识别的一种数字图像特征,它使用检测窗口中指定位置的相邻矩形,计算每一个矩形的像素和并取其差值。然后用这些差值来对图像的子区域进行分类。Harr特征最早用于人脸表示。
2. 在检测阶段,一个与目标物体同样尺寸的检测窗口将在输入图像上滑动,在图像的每一个区域都计算一个Harr特征。这些差值会与一个预先计算好的阈值进行比较,将目标与非目标区分开来。因为这样的一个Harr特征是一个弱分类器,为了达到一个可信的判断,就需要一大群这样的特征,就会将这些特征组合成一个级联分类器,最终形成一个强分类器。
3. Harr特征的主要优势在它的计算速度特别快,使用一个称为积分图的结构,任意尺寸的Harr特征都可以在常数时间内进行计算。
2. Harr特征分为分为3类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形特征像素和。Harr特征反映了图像的灰度变化情况。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构。

这里写图片描述
对于图中的A, B和D这类特征,特征数值计算公式为:v=Sum白-Sum黑,而对于C来说,计算公式如下:v=Sum白-2*Sum黑;之所以将黑色区域像素和乘以2,是为了使两种矩形区域中像素数目一致。
## 积分图的计算 ##
1. 积分图就是只要遍历一次就可以求出图像中所有区域像素和的快速算法,大大提高了图像特征值计算的效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值