LangChain之Prompt提升篇

为了让模型生成更详实、更完备的方案,我们还可以尝试使用思维链CoT(Chain of Thought)的概念来引导模型的推理。

一、什么是Chain of  Thought

原理:如果生成一系列的中间推理步骤,就能够显著提高大型语言模型进行复杂推理的能力。

二、Few-Shot  CoT(少量样本)

整体指导:你需要跟着下面的步骤一步步的推理:

1、问题理解:首先,AI需要理解用户的面求。例如,用户可能会说:“今天要参加朋友的生日Party,想送束花祝福她。”我们可以给AI一个提标模板,里面包含示例:“遇到XX问题,我先看自己有没有相关知识,有的话,就提供答案;没有,就调用工具搜索,有了知识后再试图解决。“———这就是给了AI一个思维链的示例。

2、信息搜索:接下来,AI需要搜索相关信息。例如,它可能需要查找哪些花最适合生日派对。

3、决策制定:基于收集到的信息,AI需要制定一个决策。我们可以通过思维链让他详细思考决策的流程,先做什么后做什么。例如,我们可以给它一个示例:”遇到生日派对送花的情况,我先考虑用户的需求,然后查看鲜花的库存,最后决定推荐一些玫瑰和百合,因为这些花通常适合生日派对。“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值