常见排序算法及Java实现

目录

一、使用场景对比

二、常用排序

2.1 快速排序

2.2 归并排序

2.3 插入排序

2.4 堆排序

2.5 计数排序

2.6 基数排序

三、其他排序

3.1 冒泡排序

3.2 选择排序


一、使用场景对比

排序算法基本思路平均时间复杂度空间复杂度稳定性主要使用场景
冒泡排序重复遍历列表,比较相邻元素,如果顺序错误就交换,直到没有需要交换的元素。O(n²)O(1)稳定教学用途,理论理解。实际应用极少,因为效率太低。
选择排序每次从未排序部分中选择最小(或最大)的元素,放到已排序部分的末尾。O(n²)O(1)不稳定数据量非常小,且对内存空间限制严格(因为原地排序)。实际应用较少。
插入排序将列表视为已排序和未排序两部分,逐个将未排序的元素插入到已排序部分的正确位置。O(n²)O(1)稳定小规模基本有序的数据集。常作为快速排序等算法处理小数组的优化子过程。
快速排序分治法。选择一个基准值,将数组分为小于基准和大于基准的两部分,递归地对子数组进行排序。

O(n log n),

O(n²)(最坏,已排序)

O(log n)不稳定通用且高效的排序算法,是大多数编程语言标准库的默认实现。适用于大规模随机数据。
归并排序分治法。递归地将数组分成两半分别排序,然后将两个已排序的子数组合并成一个有序数组。O(n log n)O(n)稳定需要稳定排序且不在乎O(n)额外空间的场景。也非常适合外部排序(数据在磁盘上)。
堆排序利用二叉堆(通常是大顶堆)这种数据结构,不断取出堆顶元素(最大值)并调整堆。O(n log n)O(1)不稳定需要原地排序且希望最坏情况也能保证O(n log n)性能的场景。例如在内存受限的嵌入式系统中。
计数排序不是比较排序。通过统计每个元素出现的次数,然后计算元素的位置来实现排序。O(n + k)O(n + k)稳定适用于数据范围k不大的非负整数排序,例如对年龄、考试成绩排序。
基数排序不是比较排序。按照位或关键字,从低位到高位(或反之)进行稳定的排序(通常用计数排序作为子过程)。O(d * (n + k))O(n + k)稳定适用于多关键字排序或位数固定的整数、字符串排序,例如手机号、字典单词排序。

时间复杂度:

  • O(n²): 随着数据量n的增长,时间成本呈平方级增长,性能较差。

  • O(n log n): 性能最优的比较排序算法所能达到的平均时间复杂度。

  • O(n + k) / O(d * (n + k)): 非比较排序的时间复杂度,性能可以突破O(n log n)的下限,但对输入数据有特定要求。

空间复杂度:

  • O(1): 原地排序,排序过程中只用到常数级别的额外空间(如几个变量)。

  • O(n): 需要与待排序数组同样大小的额外空间(如归并排序)。

  • O(k): 需要额外空间来存储计数数组(如计数排序)。

稳定性:

  • 稳定: 如果两个相等的元素在排序后的序列中相对顺序与排序前一致,则算法是稳定的。

    • 例如: 原序列 [(A, 3), (B, 2), (C, 2)] 按数字排序后,(B, 2) 和 (C, 2) 的相对顺序不变,结果为 [(B, 2), (C, 2), (A, 3)]

  • 不稳定: 无法保证相等元素的相对顺序。

选择建议:

  • 大规模通用排序: 快速排序(综合最快,标准库首选)。

  • 需要稳定且不怕占用空间: 归并排序

  • 小规模(<1000)或基本有序: 插入排序(性能优于冒泡)。

  • 原地排序且要保证最坏情况的性能(内存受限): 堆排序(原地排序)

  • 非负整数且范围较小: 计数排序基数排序

  • Java 的内置排序Arrays.sort() 对于基本数据类型使用双轴快速排序的变体,对于对象数组的排序使用的是名为 TimSort 的优化算法,它是归并排序和插入排序的混合体,利用了归并排序的稳定性。

二、常用排序

2.1 快速排序

核心思想:快速排序使用分治策略。主要为三个步骤:

  • 分解:从数组中选择一个元素作为基准。通过一次分区操作,将数组重新排列,使得所有比基准值小的元素都放在基准前面,所有比基准值大的元素都放在基准后面(相等的数可以放到任一边)。在这次分区操作结束后,该基准就处于数组的中间位置。这个操作称为分区操作

  • 递归:递归地将小于基准值的子数组和大于基准值的子数组进行排序。

  • 合并:因为子数组都是原址排序的,所以不需要合并操作,数组本身就已经是有序的了。

时间复杂度

  • 平均情况O(n log n)。这是快速排序最常见的情况。每次分区操作大约将数组分成两半。

  • 最好情况O(n log n)。发生在每次分区都能将数组完美地分成大小相等的两部分时。

  • 最坏情况O(n²)。发生在每次选择的 pivot 都是当前子数组中的最小或最大元素时(例如,数组已经升序或降序排序,并且总是选择最后一个元素作为 pivot)。这会导致极其不平衡的分区。

空间复杂度

  • O(log n)。空间消耗主要来自递归调用栈。在平均情况下,递归树的深度是 O(log n)。在最坏情况下,递归树的深度是 O(n)。

稳定性

  • 快速排序是不稳定的排序算法。在分区过程中,相等的元素可能会因为与 pivot 的比较而被交换到不同的相对位置。

方案一:使用 Lomuto 分区方案(易于理解)

    // 快速排序主函数
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            // 对数组进行分区,获取基准点索引
            int pivotIndex = partition(arr, low, high);
            
            // 递归排序左子数组(小于基准的部分)
            quickSort(arr, low, pivotIndex - 1);
            // 递归排序右子数组(大于基准的部分)
            quickSort(arr, pivotIndex + 1, high);
        }
    }

    // 分区函数 - 核心逻辑
    private static int partition(int[] arr, int low, int high) {
        // 选择最后一个元素作为基准
        int pivot = arr[high];
        // 指向小于基准的区域的最后一个元素
        int i = low - 1;
        
        // 遍历当前分区
        for (int j = low; j < high; j++) {
            // 如果当前元素小于或等于基准
            if (arr[j] <= pivot) {
                i++;
                // 将小于基准的元素交换到左侧区域
                swap(arr, i, j);
            }
        }
        
        // 将基准元素放到正确位置(i+1)
        swap(arr, i + 1, high);
        // 返回基准元素的最终位置
        return i + 1;
    }

    // 交换数组中两个元素的位置
    private static void swap(int[] arr, int i, int j) {
        if (i != j) {
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }

优化建议:随机选择基准,避免最坏情况时间复杂度

// 在partition函数开头添加:
int randomIndex = low + (int)(Math.random() * (high - low + 1));
swap(arr, randomIndex, high);

方案二:使用 Hoare 分区方案(更高效,交换次数更少)

public class QuickSortHoare {

    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int pi = partition(arr, low, high);
            quickSort(arr, low, pi); // 注意这里包含了pi位置
            quickSort(arr, pi + 1, high);
        }
    }

    /* 
     * Hoare 分区方案
     * 通常选择中间元素作为基准(pivot),但可以选择第一个或任意一个
     * 两个指针从两端向中间扫描,交换逆序对
     * 当指针相遇时返回相遇点的索引
     */
    private static int partition(int[] arr, int low, int high) {
        // 选择第一个元素作为基准(也可以选择中间的元素来优化)
        int pivot = arr[low];
        int i = low - 1;
        int j = high + 1;

        while (true) {
            // 从左向右找到第一个 >= pivot 的元素
            do {
                i++;
            } while (arr[i] < pivot);

            // 从右向左找到第一个 <= pivot 的元素
            do {
                j--;
            } while (arr[j] > pivot);

            // 如果指针相遇或交叉,返回j作为分界点
            if (i >= j) {
                return j;
            }
            // 交换这两个逆序的元素
            swap(arr, i, j);
        }
    }

    // 交换数组中两个元素的位置
    private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

}

2.2 归并排序

核心思想:归并排序采用分治策略,将数组分成两半,分别排序,然后合并两个有序数组。

  • :递归地将当前数组平均分割成两个子数组,直到每个子数组只包含一个元素(一个元素的数组自然是有序的)。

  • :将两个已经排序的子数组合并成一个更大的有序数组,直到最终合并成一个完整的排序数组。

时间复杂度

  • 最好、最坏、平均情况均为 O(n log n)

  • “分”的阶段:数组每次被一分为二,形成一棵递归树,树的高度是 log₂n

  • “治”的阶段:在每一层递归中,merge 操作需要处理 n 个元素,所以每一层的时间复杂度是 O(n)

  • 总时间复杂度 = 树的高度 × 每层的工作量 = O(log n) × O(n) = O(n log n)

空间复杂度

  • O(n)

  • 这是归并排序的主要缺点。merge 操作需要一個与原始数组等大的临时数组来存放合并后的结果。

  • 此外,递归调用需要 O(log n) 的栈空间。

  • 总空间复杂度由临时数组主导,为 O(n)

稳定性

  • 归并排序是稳定的排序算法。

  • 在 merge 操作中,当两个元素相等时,我们可以优先取左边子数组的元素,这样就保证了它们原始的相对顺序不被改变。

链表排序:归并排序非常适合于对链表进行排序,因为它只需要改变节点的链接关系,而不需要像数组那样开辟大量临时空间,空间复杂度可以降至 O(1)。

// 自底向上的迭代实现(非递归)
public class MergeSortIterative {

    public static void mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        int n = arr.length;
        int[] temp = new int[n];

        // size 表示当前要合并的子数组的大小,从1开始,每次加倍
        for (int size = 1; size < n; size *= 2) {
            // left 表示每次要合并的两个子数组的起始位置
            for (int left = 0; left < n - size; left += 2 * size) {
                int mid = left + size - 1;
                // 确保右子数组的边界不越界
                int right = Math.min(left + 2 * size - 1, n - 1);
                merge(arr, left, mid, right, temp);
            }
        }
    }

    // merge 方法与递归版本中的完全相同
    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left;
        int j = mid + 1;
        int t = 0;

        while (i <= mid && j <= right) {
            if (arr[i] <= arr[j]) {
                temp[t++] = arr[i++];
            } else {
                temp[t++] = arr[j++];
            }
        }
        while (i <= mid) {
            temp[t++] = arr[i++];
        }
        while (j <= right) {
            temp[t++] = arr[j++];
        }

        t = 0;
        while (left <= right) {
            arr[left++] = temp[t++];
        }
    }

    // ... printArray 和 main 方法与上一个例子相同 ...
}
// 标准的自顶向下递归实现(最直观)
public class MergeSort {

    // 主方法,供用户调用
    public static void mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        int[] temp = new int[arr.length]; // 创建临时数组,避免在递归中反复创建
        sort(arr, 0, arr.length - 1, temp);
    }

    // 递归排序函数
    private static void sort(int[] arr, int left, int right, int[] temp) {
        // 递归终止条件:子数组只有一个元素或为空
        if (left < right) {
            int mid = left + (right - left) / 2; // 防止溢出,等同于 (left+right)/2
            // 递归分解左边
            sort(arr, left, mid, temp);
            // 递归分解右边
            sort(arr, mid + 1, right, temp);
            // 合并左右两个有序子数组
            merge(arr, left, mid, right, temp);
        }
    }

    // 核心:合并两个有序子数组 arr[left...mid] 和 arr[mid+1...right]
    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left;    // 左子数组的起始索引
        int j = mid + 1; // 右子数组的起始索引
        int t = 0;       // 临时数组的当前索引

        // 1. 比较两个子数组的元素,将较小的放入temp
        while (i <= mid && j <= right) {
            if (arr[i] <= arr[j]) { // 这里 <= 保证了算法的稳定性
                temp[t++] = arr[i++];
            } else {
                temp[t++] = arr[j++];
            }
        }

        // 2. 将左子数组中剩余的元素拷贝到temp
        while (i <= mid) {
            temp[t++] = arr[i++];
        }

        // 3. 将右子数组中剩余的元素拷贝到temp
        while (j <= right) {
            temp[t++] = arr[j++];
        }

        // 4. 将temp数组中合并好的数据拷贝回原数组arr
        t = 0;
        while (left <= right) {
            arr[left++] = temp[t++];
        }
    }

    // 辅助方法:打印数组
    public static void printArray(int[] arr) {
        for (int value : arr) {
            System.out.print(value + " ");
        }
        System.out.println();
    }

    // 测试代码
    public static void main(String[] args) {
        int[] arr = {38, 27, 43, 3, 9, 82, 10};
        System.out.println("原始数组:");
        printArray(arr);

        mergeSort(arr);

        System.out.println("\n排序后数组:");
        printArray(arr); // 输出: 3 9 10 27 38 43 82
    }
}

2.3 插入排序

核心思想:将数组分为“已排序”和“未排序”两部分。初始时,已排序部分只有一个元素。然后依次将未排序部分的元素“插入”到已排序部分的正确位置,直到所有元素都插入完毕。

时间复杂度

  • 最坏情况:数组完全逆序。每个新元素都需要与所有已排序元素比较并移动。需要 1 + 2 + ... + (n-1) = n(n-1)/2 次比较和移动。所以是 O(n²)

  • 最好情况:数组已经有序。每个新元素只需要比较一次(与前一个元素),无需移动。所以是 O(n)

  • 平均情况O(n²)

空间复杂度

  • 排序过程只在原数组内部进行移位和插入,只需要常数级别的额外空间(用于存储待插入的元素和循环索引)。所以是 O(1),属于原地排序

稳定性

  • 插入排序是稳定的排序算法。

  • 当比较两个相等的元素时,后插入的元素会放在先插入元素的后面,不会改变它们原有的相对顺序。

public class InsertionSort {
    // 使用while实现
    public static void insertionSort(int[] arr) {
        int n = arr.length;
        for (int i = 1; i < n; i++) {
            int key = arr[i];
            int j = i - 1;
            
            // 将大于key的元素向后移动
            while (j >= 0 && arr[j] > key) {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = key;
        }
    }

    // 使用for实现
    public static void insertionSortForLoop(int[] arr) {
        int n = arr.length;

        for (int i = 1; i < n; i++) {
            int key = arr[i];
            int j;
            // 使用 for 循环来寻找插入点并移动元素
            for (j = i - 1; j >= 0 && arr[j] > key; j--) {
                arr[j + 1] = arr[j];
            }
            arr[j + 1] = key;
        }
    }
}

2.4 堆排序

核心思想:是一种基于二叉堆数据结构的比较排序算法,具有O(n log n)的时间复杂度,且是原地排序(只需要常数级额外空间),是一种选择排序。

  • 二叉堆:一种完全二叉树,可分为:

    • 最大堆:每个节点的值都大于或等于其子节点的值

    • 最小堆:每个节点的值都小于或等于其子节点的值

  • 堆的性质

    • 对于索引i的元素:

      • 父节点位置:(i-1)/2

      • 左子节点位置:2*i + 1

      • 右子节点位置:2*i + 2

时间复杂度

  • 构建堆:O(n)

  • 每次堆调整:O(log n)

  • 总体:O(n log n)

空间复杂度:O(1)(原地排序)

稳定性:不稳定(相同元素可能会改变相对位置)

public class HeapSort {
    
    public static void heapSort(int[] arr) {
        int n = arr.length;
        
        // 构建最大堆(从最后一个非叶子节点开始)
        for (int i = n / 2 - 1; i >= 0; i--) {
            heapify(arr, n, i);
        }
        
        // 逐个提取堆顶元素
        for (int i = n - 1; i > 0; i--) {
            // 将当前堆顶元素(最大值)与末尾元素交换
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
            
            // 调整剩余元素的堆结构
            heapify(arr, i, 0);
        }
    }
    
    // 调整堆(最大堆)
    private static void heapify(int[] arr, int n, int i) {
        int largest = i;        // 初始化最大值为当前节点
        int left = 2 * i + 1;   // 左子节点
        int right = 2 * i + 2;  // 右子节点
        
        // 如果左子节点存在且大于当前最大值
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        
        // 如果右子节点存在且大于当前最大值
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        
        // 如果最大值不是当前节点,交换并继续调整
        if (largest != i) {
            int swap = arr[i];
            arr[i] = arr[largest];
            arr[largest] = swap;
            
            // 递归调整受影响的子树
            heapify(arr, n, largest);
        }
    }
    
    // 测试代码
    public static void main(String[] args) {
        int[] arr = {12, 11, 13, 5, 6, 7};
        
        System.out.println("原始数组:");
        printArray(arr);
        
        heapSort(arr);
        
        System.out.println("排序后数组:");
        printArray(arr);
    }
    
    private static void printArray(int[] arr) {
        for (int value : arr) {
            System.out.print(value + " ");
        }
        System.out.println();
    }
}

2.5 计数排序

核心思想:通过统计每个元素出现的次数,然后直接计算每个元素在排序后数组中的位置。计数排序是一种非比较型整数排序算法,特别适用于对一定范围内的整数进行排序。

  1. 确定范围:找出待排序数组中的最大值和最小值,确定数值范围

  2. 计数:创建一个计数数组,统计每个数值出现的次数

  3. 累加计数:将计数数组转换为位置索引数组(累加计数)

  4. 排序:根据位置索引数组,将元素放到正确的位置上

时间复杂度:O(n + k),其中k是整数的范围

空间复杂度:O(n + k)

稳定性:稳定排序算法

    /**
     * 计数排序实现
     * @param arr 待排序数组
     * @return 排序后的数组
     */
    public static int[] countingSort(int[] arr) {
        if (arr.length == 0) {
            return arr;
        }
        
        // 1. 找出数组中的最大值和最小值
        int min = arr[0];
        int max = arr[0];
        for (int num : arr) {
            if (num < min) {
                min = num;
            }
            if (num > max) {
                max = num;
            }
        }
        
        // 2. 创建计数数组并统计每个元素出现的次数
        int range = max - min + 1;
        int[] count = new int[range];
        for (int num : arr) {
            count[num - min]++;
        }
        
        // 3. 将计数数组转换为位置索引数组(累加计数)
        for (int i = 1; i < range; i++) {
            count[i] += count[i - 1];
        }
        
        // 4. 创建输出数组,根据计数数组将元素放到正确位置
        int[] output = new int[arr.length];
        // 从后往前遍历原数组,保证排序的稳定性
        for (int i = arr.length - 1; i >= 0; i--) {
            int num = arr[i];
            int position = count[num - min] - 1;
            output[position] = num;
            count[num - min]--;
        }
        
        return output;
    }
    
    /**
     * 简化版计数排序(不保持稳定性)
     */
    public static int[] simpleCountingSort(int[] arr) {
        if (arr.length == 0) {
            return arr;
        }
        
        // 找出数组中的最大值和最小值
        int min = arr[0];
        int max = arr[0];
        for (int num : arr) {
            if (num < min) min = num;
            if (num > max) max = num;
        }
        
        // 创建计数数组
        int range = max - min + 1;
        int[] count = new int[range];
        
        // 统计每个元素出现的次数
        for (int num : arr) {
            count[num - min]++;
        }
        
        // 根据计数数组重构排序后的数组
        int index = 0;
        for (int i = 0; i < range; i++) {
            while (count[i] > 0) {
                arr[index++] = i + min;
                count[i]--;
            }
        }
        
        return arr;
    }

2.6 基数排序

核心思想:其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。是一种非比较型整数排序算法。

  1. 确定最大数的位数:找出数组中最大数字的位数,这决定了需要多少轮排序

  2. 按位排序:从最低位开始,对每一位进行稳定排序(通常使用计数排序)

  3. 重复排序:对每一位重复上述过程,直到最高位

时间复杂度:O(d*(n+k)),其中d是最大位数,n是元素数量,k是基数(通常为10)

空间复杂度:O(n+k),需要额外的空间来存储临时数组

举例:

假设我们要排序的数组是 [170, 45, 75, 90, 802, 24, 2, 66]

第一轮(按个位数排序):

  • 170 → 0

  • 45 → 5

  • 75 → 5

  • 90 → 0

  • 802 → 2

  • 24 → 4

  • 2 → 2

  • 66 → 6

排序后:[170, 90, 802, 2, 24, 45, 75, 66]

第二轮(按十位数排序):[802, 2, 24, 45, 66, 170, 75, 90]

第三轮(按百位数排序):[2, 24, 45, 66, 75, 90, 170, 802]

import java.util.Arrays;

public class RadixSort {

    public static void radixSort(int[] arr) {
        if (arr == null || arr.length <= 1) {
            return;
        }
        
        // 找出数组中的最大值,确定最大位数
        int max = Arrays.stream(arr).max().getAsInt();
        
        // 从最低位开始,对每一位进行计数排序
        for (int exp = 1; max / exp > 0; exp *= 10) {
            countingSort(arr, exp);
        }
    }
    
    private static void countingSort(int[] arr, int exp) {
        int n = arr.length;
        int[] output = new int[n]; // 输出数组
        int[] count = new int[10]; // 计数数组,0-9共10个数字
        
        // 初始化计数数组
        Arrays.fill(count, 0);
        
        // 统计每个数字出现的次数
        for (int i = 0; i < n; i++) {
            int digit = (arr[i] / exp) % 10;
            count[digit]++;
        }
        
        // 将计数数组转换为位置索引
        for (int i = 1; i < 10; i++) {
            count[i] += count[i - 1];
        }
        
        // 构建输出数组(从后向前遍历以保证稳定性)
        for (int i = n - 1; i >= 0; i--) {
            int digit = (arr[i] / exp) % 10;
            output[count[digit] - 1] = arr[i];
            count[digit]--;
        }
        
        // 将排序结果复制回原数组
        System.arraycopy(output, 0, arr, 0, n);
    }
    
    // 测试代码
    public static void main(String[] args) {
        int[] arr = {170, 45, 75, 90, 802, 24, 2, 66};
        System.out.println("排序前: " + Arrays.toString(arr));
        
        radixSort(arr);
        
        System.out.println("排序后: " + Arrays.toString(arr));
    }
}

三、其他排序

3.1 冒泡排序

核心思想:重复地遍历要排序的列表,一次比较相邻的两个元素,如果它们的顺序错误就把它们交换过来。这个过程就像最大的气泡(最大的数字)一次次地“沉”到列表的底部。

时间复杂度

  • 最坏情况:数组完全逆序。需要比较 (n-1) + (n-2) + ... + 1 = n(n-1)/2 次。所以是 O(n²)

  • 最好情况:数组已经有序。优化后的算法只需要遍历一次(n-1次比较)就会退出。所以是 O(n)

  • 平均情况O(n²)

空间复杂度

  • 排序过程只在原数组内部进行交换,只需要一个临时变量用于交换。所以是 O(1),属于原地排序

    // 冒泡排序实现
    public static void bubbleSort(int[] arr) {
        int n = arr.length;
        // 优化标志:如果某次遍历没有交换,说明已排序完成
        boolean swapped;
        
        for (int i = 0; i < n - 1; i++) {
            swapped = false;
            // 每次遍历将最大的元素"冒泡"到最后
            for (int j = 0; j < n - i - 1; j++) {
                // 比较相邻元素
                if (arr[j] > arr[j + 1]) {
                    // 交换 arr[j] 和 arr[j+1]
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                    swapped = true;
                }
            }
            
            // 如果没有发生交换,说明数组已经有序
            if (!swapped) {
                break;
            }
        }
    }

3.2 选择排序

核心思想:不断地从剩余未排序的元素中选择最小(或最大)的那个,将其放到已排序序列的末尾

时间复杂度

  • 最好、最坏、平均情况均为 O(n²)

  • 无论数组是否有序,算法都需要进行 (n-1) + (n-2) + ... + 1 = n(n-1)/2 次比较来寻找最小值。这是一个固定的次数。

  • 交换操作的次数是 O(n),最多进行 n-1 次交换。这比冒泡排序(交换次数多)要好一些。

空间复杂度

  • 排序过程只在原数组内部进行交换,只需要常数级别的额外空间(用于存储最小值的索引和临时交换变量)。所以是 O(1),属于原地排序

稳定性

  • 选择排序是不稳定的排序算法。

public class SelectionSort {
    public static void selectionSort(int[] arr) {
        int n = arr.length;
        for (int i = 0; i < n - 1; i++) {
            int minIndex = i;
            for (int j = i + 1; j < n; j++) {
                if (arr[j] < arr[minIndex]) {
                    minIndex = j;
                }
            }
            // 交换找到的最小元素和第一个未排序元素
            if (minIndex != i) { // 小小的优化,避免不必要的交换
                int temp = arr[minIndex];
                arr[minIndex] = arr[i];
                arr[i] = temp;
            }
            
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熙客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值