离散数学15_第8章 图

本文介绍了图论的基本概念,包括无向图的阶、奇顶点、连通图以及欧拉图和半欧拉图的性质。通过定理阐述了判断图是否为欧拉图的条件,并通过例题展示了如何运用这些定理。此外,还讲解了哈密顿图的概念,以及如何利用图论解决实际问题,如语言交流的圆桌安排问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章介绍的图,是一种重要的结构,表示客观世界中对象之间关系的一个数学抽象。

例如: 可用图来表示计算机网络, 城市交通问题等。

一  知识结构图

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

在图G=<V, E>中,若|V| = n, G称为 n阶图; 若E 为空集, 称图G是n阶零图。

阶: 指 顶点数。

在图G, 若某顶点的度数为奇数, 称V为奇顶点或奇点。

 

定理1 所有顶点的度数之和等于边数的2倍

定理2 任意图G, 奇顶点必有偶数个

完全图:一个无向图,每个顶点都与其余顶点连接,称为完全图,记作 845cf272a5774c97bfb3c856b33b6a82.png

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

二  通路和回路、  连通图

在图中,通路是指由顶点和边构成的, 可以出现重复的顶点。 若通路中的所有边互不相同,则称为简单通路或迹。

若通路中所有结点互不相同,所有边互不相同,则称为基本通路、初级通路、路径。

回路是指起点和终点相同的通路。若回路中的所有边互不相同, 则称为简单回路或闭迹。

若回路中所有结点互不相同,所有边互不相同, 则称为基本回路、初级回路。

可以看到: 简单 对应的是 所有边互不相同,  基本 的限制更多,还要加上所有结点互不相同。

 

连通图:若图G中任意两个顶点之间都是连通的,称G为连通图。

设G是一个简单连通图, 若G有一个顶点度数为a, 则G至少有a+1个顶点。

~~~~~~~~~~~~~~~~~~

看一个例题: 设G是无向简单图, 有11个顶点, 每个顶点的度数均到少为5。 证明:G是连通图。

分析: 图的 证明题一般都是用反证法。

证明: 用反证法: 

假设G不是连通图, 则G至少包含两个连通分支A、B

A、B都是连通图, 且每个顶点度数至少为5, 所以A、B均至少有6个顶点。

所以图G至少有12个顶点, 与已知条件矛盾。

故假设不成立, 即G是连通图。

~~~~~~~~~~~~~~~~~~~~~~

三  矩阵

2.1 无向图的邻接矩阵

  • 无向图的邻接矩阵是关于主角线对称的矩阵
  • 主对角线的元素不为0表示对应的结点有环
  • 第 i 行对应的结点V i没有环时, 这一行的所有元素之和是结点Vi的度数。 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

2.2 有向图的邻接矩阵

邻接矩阵 定义: 设图G=<V, E>, V={V1, V2, V3, V4},  用 d9d032151aa346b0831f636aa7829405.png 表示从顶点vi 到vj的边数,则可得到图G的邻接矩阵M

例:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_19,color_FFFFFF,t_70,g_se,x_16  watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

说明: 第1行第1列的1 ,表示从V1到V1有一条边, 

            第1行第2列的0, 表示从V1到V2 没有边

  注意: 矩阵每个值,是从左边  ——> 上边,  例如 2是指V2——>V1

 

四 欧拉图

定义: 设G = (V, E) 是无向图或有向图, 若G中有一条包含所有边的简单回路, 称该回路为欧拉回路,称图G为欧拉图。

就是说, 欧拉图是在 简单回路 再加上限制条件  得来

若G中有一条包含G中所有边的简单通路, 称它为欧拉通路, 称图G为半欧拉图。

规定平凡图是欧拉图。 

欧拉图的判断

定理1: 无向连通图G是欧拉图, 当且仅当G的所有结点的度数都是偶数。

定理2: 连通无向图G是半欧拉图, 当且仅当G中只有两个奇度数的结点,其余结点的度数都是偶数。

定理3: 连通有向图G是欧拉图, 当且仅当G中每个结点的入度等于它的出度。

定理4: 连通有向图G是半欧拉图, 当且仅当G中有且仅有两个奇度数结点, 其中一个结点的入度比出度大1, 另一个结点的入度比出度小1.  其余结点的入度和出度相等。 

看一个例题

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

解: 图(1)是欧拉图, 根据定理3.

        图 (2) 是半欧拉图, 根据定理4, 有两个奇度数的结点。

        图(3)有两个结点,其中一个入度-出度=2, 另一个出度-入度=2, 所以不是欧拉图,也不是半欧拉图。 只能称为有无欧拉图向回路。

注: 判断一个图能否一笔画出,就是判断一个图是否欧拉图或是半欧拉图。

五  哈密顿图

定义: 设图G是无向图或有向图, 若G中有一条包含G的所有结点(仅一次)的回路, 称该回路为哈密顿回路, 称图G为哈密顿图。

若图G有一条包含G的所有结点的通路, 称该通路为哈密顿通路, 称图G为半哈密顿图。

规定平凡图是哈密顿图。 平凡图是指 仅有一个顶点的图。

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

 环图都是哈密顿图。

用哈密顿图解决实际问题

例: 有7个人,A会讲英语,B会讲英语和汉语, C会讲英语、意大利语和俄语, D会讲日语和汉语, E 会讲德语和意大利语, F会讲法语、日语和俄语,G会讲法语和德语, 问能否将他们沿圆桌安排就坐成一圈, 使得每个人都能与两旁的人交谈?

 分析:每人用一个结点表示, 两个人会讲同一种语言,则在对应的结点之间连接一条边, 得到图。

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值