《LeetCode笔记90》:矩阵中的最长递增路径

本文探讨了在给定整数矩阵中寻找最长递增路径的算法,通过深度优先搜索(DFS)策略,并利用矩阵记录已计算的最长递增序列长度,避免重复计算,有效提高算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给定一个整数矩阵,找出最长递增路径的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

示例 1:

输入: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]

输出: 4 
解释: 最长递增路径为 [1, 2, 6, 9]。

示例 2:

输入: nums = 
[
  [3,4,5],
  [3,2,6],
  [2,2,1]

输出: 4 
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix

方法一:

DFS,在遍历的时候用矩阵记录以当前坐标为起点的最长递增序列。

class Solution:
    def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
        h = len(matrix)
        if h==0:
            return 0
        w = len(matrix[0])
        max_length = 1
        length = [[-1]*w for i in range(h)]
        for i in range(h):
            for j in range(w):
                if length[i][j]!=-1:
                    max_length = max(max_length, length[i][j])
                else:
                    l = self.lengthIncreasingPathe(matrix, i, j, w, h, length)
                    max_length = max(max_length, l)
        print(length)
        return max_length

    def lengthIncreasingPathe(self, matrix, i, j, w, h, length):
        if length[i][j]!=-1:
            return length[i][j]
        dindex = [[0,1], [0,-1],[1, 0], [-1, 0]]
        l = 1
        for [dx, dy] in dindex:
            x = i+dx
            y = j+dy
            if x>=0 and x<h and y>=0 and y<w:
                if matrix[x][y]>matrix[i][j]:
                    l = max(self.lengthIncreasingPathe(matrix, x, y, w, h, length)+1, l)
        length[i][j] = l
        return l

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值