python mutiprocessing使用

本文介绍了一个使用Python的multiprocessing模块实现的多进程应用实例。该实例通过定义不同的进程任务,展示了如何利用进程池(pool)来并行处理数据,并且演示了如何使用进程锁(lock)来控制多个进程对共享资源的访问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

帮助文档:点击打开链接
mutiprocessing.Process=单进程,多进程 mutiprocessing.Lock=进程锁 mutiprocessing.Semaphore=N锁 Pool.apply_async=得到返回结果 Pool.map=批量进程

import multiprocessing
import cv2
def f(x):
    return x*2
    # img = cv2.imread(x, cv2.IMREAD_COLOR)
    # cv2.imshow(x, img)
    # cv2.waitKey()
    # return img
def f(l, i):
    l.acquire()
    print('hello world', i)
    time.sleep(1)
    l.release()
if __name__ == '__main__':


# lock = Lock()
# s= time.time()
# p=[]
# for num in range(10):
#     ptemp=Process(target=f, args=(lock, num))
#     ptemp.start()
#     p.append(ptemp)
# for p1 in p:
#     p1.join()
# print(time.time()-s)
# cores = multiprocessing.cpu_count() # print(cores) # pool = multiprocessing.Pool(processes=4) xs = range( 10) # # # # method 1: map # # print(pool.map(f, xs)) # prints [0, 1, 4, 9, 16] # # for y in pool.imap(f, xs): # # print (y ) # 0, 1, 4, 9, 16, respectively # # method 3: imap_unordered # for y in pool.imap_unordered(f, xs): # print(y) # may be in any order # pool.close() # pool.join() p1 = multiprocessing.Process( target=f, args=( 1,)) p2 = multiprocessing.Process( target=f, args=( 2,)) p1.start() p2.start() for p in multiprocessing.active_children(): print(p.name,p.pid,p) p1.join() p2.join()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值