codeforces div2 714 ABC

本文介绍了两个编程问题的解决方案。第一个问题是构造具有特定峰数的序列,通过位操作实现。第二个问题涉及计算满足特定位运算条件的全排列数量。同时,还提供了解决数字位数增长问题的策略,通过对每一位单独操作并预处理位操作结果来得出最终答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Array and Peaks

题意给你n,k;输出一个长度为n,包含k个峰的序列(1至n每个数字只出现一次),不存在输出-1.

思路

  • 首先长度为n的序列最多有(n-1)/2个峰,如果k>(n-1)/2那么输出-1。
  1. 其余的在i的位置(i%2==0&&1=<i<=n)依次放置最大值。再在空白的位置从小到大依次排放没使用过的数字。
  2. 或者在原本1到n有序的序列上交换第i个和第i+1个(i%2==0&&1=<i<=n)

代码

#include<iostream>
#include<cstring> 
#include<cmath>
#include<stack>
#include<algorithm>
#include<map>
#include<vector> 
#include<queue>
#include<set>

using namespace std;
const int N = 1e5;
int a[N];
void solve(){
	int n, k;
	cin >> n >> k;
	
	if(k>(n-1)/2) {
		puts("-1");
		return;
	}
	for(int i = 1; i <= n; i ++) a[i] = i;
	int idx = 2;
	while(k--){
		swap(a[idx],a[idx+1]);
		idx+=2;
	}
	for(int i = 1; i <= n; i ++) printf("%d ",a[i]);
	puts("");
	return;
}
int main(){
	int T;
	cin >> T;
	while (T--){
		solve();
	}
	return 0;
}

B.AND Sequences

题意给你n个数,将其全排列,其中满足𝑎1&𝑎2&…&𝑎𝑖=𝑎𝑖+1&𝑎𝑖+2&…&𝑎𝑛,(1<=i<n)的有多少种。

思路

  • 如果满足题目要求的必定满足x = a1&a2&…&a(k-1)&a(k+1)&…&an。再在等式两边&上x。此时排列为 x(中间有n-2个数)x那么右边就是n个数&起来,这是恒定的,计作sum。
  • 然后找数列中有几个数等于sum,也就是x的个数,计作cnt。因为x要在排列首尾各放一个,当x的个数小于2时才存在答案。
  • 答案=A(n-2,n-2){中间排列的种数} ✖️ A(2,cnt){首尾放置的种数}
  • 注意当ai==aj但i != j时两个元素不能视为相同

代码

#include<iostream>
#include<cstring> 
#include<cmath>
#include<stack>
#include<algorithm>
#include<map>
#include<vector> 
#include<queue>
#include<set>
using namespace std;
typedef long long ll;
const ll N = 200010, mod = 1e9 + 7;
ll a[N];
ll p[N];
int main() {
  p[0] = p[1] = 1;
  for (int i = 2; i <= 200010; i++) p[i] = (p[i - 1] * i) % mod;
  int T;
  cin >> T;
  while (T--) {
    ll n;
    cin >> n;
    ll sum = (1<<31)-1;
    for (int i = 1; i <= n; i++) {
      scanf("%lld", &a[i]);
      sum &= a[i];
    }
    ll cnt = 0;
    for (int i = 1; i <= n; i++)
      if (a[i] == sum) cnt++;

    ll ans;
    if (cnt < 2) {
      ans = 0;
    }
    else{
      ans = cnt*(cnt-1)%mod;
      ans = (ans*p[n-2])%mod;
    }
    
    printf("%lld\n", ans);
  }
  return 0;
}

C. Add One

题意给你一个数字,要求对它进行m次操作,每次操作对每一位数字加1。求m次操作后数字的位数(长度)

思路

  • 首先明确每个数字的操作是独立的就是说123 操作m次可以看做1操作m次,2操作m次,3操作m次,最后把他们操作m次后各自的长度加起来就是123操作m次的长度。
  • 记f(n,m)为对n操作m次的长度
    则有f(10,m)= f(1,m)+ f(0,m)=f(10,m-9)+f(10,m-10)
    所以可以预处理出对10操作m次的后长度的数组
  • 然后只需要对原数字的每一位处理就好

这题卡常数,得用scanf,因为这个wa了好久0.0

代码


#include<iostream>
#include<cstring> 
#include<cmath>
#include<stack>
#include<algorithm>
#include<map>
#include<vector> 
#include<queue>
#include<set>

using namespace std;
const int N = 2e5+10;
const int mod = 1e9+7;
long long a[15];
long long b[N];

void init(){
	for(int i = 0; i <= 8; i ++) b[i] = 2;
	b[9]=3;
	for(int i = 10; i <=200005;i++) b[i] = (b[i-9]+b[i-10])%mod;
	
} 
void solve(long long m,long long n){
	for(int i = 0; i <=9;i ++) a[i] = 0;//刚开始每个数字个数0
	long long ans = 0;
	if(n==0) {//0的长度为1
		a[0]++;
	}
	while(n){
		a[n%10]++;
		n/=10;
	}
	
	
	for(int i = 0; i <=9; i ++){//遍历每个数字
		long long x;
		if(m-10+i<0) x = 1; //m次操作后无法变成10;
		else x = b[m-10+i];//变成10,在进行m-k操作,k是变成10所需操作数
		long long temp = (a[i]*x)%mod;
		ans+=temp;
		ans%=mod;
	}
	printf("%lld\n",ans);
	return;
}
int main(){
	int T;
	cin >> T;
	init();
	while (T--){
		long long n, m;
		scanf("%lld %lld",&n,&m);
		solve(m,n);
	}
	return 0;
}


、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪和极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉和极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心和象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值