
AI编程
文章平均质量分 81
赛博AI Lewis
May the Force be with you.年轻人别太放肆,没什么用
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
驭码CodeRider 2.0 深度体验:从入门到精通的AI编程革命
作为一名长期在开发一线工作的程序员,我经历过从IDE基础补全到云化AI助手的演进过程,始终期待一款真正贴合开发者痛点的工具。:首次加载需手动下载依赖,建议网络稳定时操作;- 功能:遍历所有PNG,将有透明通道的图片存入“透明”子目录,否则存入“不透明”输入:“用Gin框架实现JWT用户登录” → 生成完整路由、GORM模型、中间件。:结合快捷键Ctrl+Alt+E快速唤醒代码解释功能,开发效率翻倍。:对生成代码添加// 解释:前缀,可逐行获取注释说明。:开发Python工具,将输入目录的PNG图片。原创 2025-06-10 11:17:59 · 994 阅读 · 0 评论 -
Github AI开发者生态最新动态今日速览(20250408)
开源AI项目与开发者资源。企业合作与开发者趋势。原创 2025-04-08 11:14:45 · 6208 阅读 · 0 评论 -
AI编程工具领域:深度理解项目架构篇
早期的AI编程工具(如GitHub Copilot)主要聚焦函数级代码生成,但2025年的工具已能通过RAG技术、向量数据库等手段深度理解项目架构。在AI编程工具领域,能够读取项目目录并深度理解项目架构的工具主要通过代码索引、上下文感知和智能问答等功能实现。:工具生成的代码可能隐含版权风险(如CodeWhisperer会标记相似开源代码的许可证),开发者需建立代码合规审查流程。:基于RAG技术,支持本地代码库的索引和深度感知,可分析项目完整结构,生成文件解释、代码逻辑查询和整体修改建议。原创 2025-03-18 10:39:34 · 1072 阅读 · 0 评论 -
关于 MCP(Model Context Protocol)的综合解析
MCP 通过标准化上下文协议和 "深度工具链集成",显著提升了 AI 编程工具的实用性和效率。对于开发者而言,合理利用 MCP 可实现从设计到部署的全流程自动化,但需权衡其配置成本与功能需求。未来随着模型升级(如 Claude 3.7 支持 12 万 Token 上下文窗口),MCP 在复杂项目中的应用潜力将进一步释放。原创 2025-03-18 07:30:00 · 964 阅读 · 0 评论 -
Trae资源库全解析(截至2025年3月)
Trae的资源库以“本土化开发支持“和“企业级工具链“为核心竞争力,结合官方模板、模型资源和社区生态,为开发者提供从需求分析到部署上线的全流程支持。无论是独立开发者快速构建原型,还是企业团队实现合规开发,均可通过灵活调用资源库提升效率[1][59][83]。原创 2025-03-16 10:56:32 · 952 阅读 · 0 评论 -
Cursor资源库全解析(截至2025年3月)
Cursor资源库的深度利用需结合"开源配置"、"自定义规则"与"社区智慧"。开发者可通过官方资源库快速启动项目,利用和@Docs实现精准控制,并参考社区教程提升协作效率。未来随着AI模型与生态插件的持续升级,Cursor将更深度融入企业开发全流程。原创 2025-03-17 05:00:00 · 1063 阅读 · 0 评论 -
TRAE与Cursor最佳实践指南(截至2025年3月)
TRAE:适合中文开发者、企业级项目和新手教学,注重本土化和全流程管理。Cursor:适合多语言混合开发、独立开发者和高频调试场景,依赖VS Code生态和全局上下文感知能力。通过优化提示词、整合工具链和场景化实践,开发者可显著提升AI编程效率,降低开发成本。原创 2025-03-16 10:39:38 · 1679 阅读 · 0 评论 -
TRAE与Cursor AI编程工具综合对比(截至2025年3月)
Trae与Cursor的竞争本质是"本土化优化"与"全球化生态"的博弈。Trae凭借免费策略和中文场景特化,正在快速抢占国内市场;而Cursor依靠成熟的VS Code生态和技术积累,仍是多语言开发的首选。未来两者的差异化或进一步扩大:Trae可能强化企业级服务,Cursor则可能深耕AI与云原生的深度集成。原创 2025-03-16 10:34:36 · 2537 阅读 · 0 评论 -
做一款软件产品,需要经历哪些阶段,哪些是关键阶段?
开发一款软件产品需要经历一系列系统化的阶段,每个阶段的目标和关键任务不同,且存在多个经典模型(如瀑布模型、敏捷开发、V模型等)。原创 2025-03-15 06:30:00 · 990 阅读 · 0 评论 -
基于AI编程辅助工具的普及,产品的全流程将发生“从“线性人工驱动”到“智能协同共生”“的范式转变
企业需通过"技术路线图"(如boardmix工具)动态规划AI工具的应用路径,平衡效率提升与风险控制,以适应这场“人机共生”的产业革命。工具如v0支持通过拖拽和自然语言生成可复用的UI组件,并实时预览设计效果,设计师与开发者的协作边界被打破,需求验证周期缩短50%以上。豆包MarsCode的Apply功能可自动分析代码结构,识别冗余逻辑并提供优化方案,如将同步代码改为异步模式,同时生成兼容性测试用例。工具如豆包MarsCode可预判代码中的潜在漏洞(如SQL注入),并提供修复建议,甚至自动生成补丁代码。原创 2025-03-14 07:30:00 · 476 阅读 · 0 评论 -
基于AI编程,产品全流程变革的具体案例
通过部署AI驱动的柔性制造系统,工厂可在5分钟内切换生产不同型号的电动汽车底盘,并利用数字孪生技术实时模拟生产变量,将设备停机时间大幅缩短。通过AI动态匹配电池资源,优化组件性能,同时智能人力管理系统将员工技能数据化,提升排产效率30%以上。AI算法结合历史订单数据、供应链状态等参数,自主生成最优生产计划,实现生产效率与灵活性的双重提升。构建贯穿临床试验全流程的AI系统,解决数据质量、模型可信度及监管合规问题,缩短试验周期20%以上。通过多智能体协作优化方案设计,减少人工干预环节,提升数据采集与分析效率。原创 2025-03-13 15:59:35 · 607 阅读 · 0 评论 -
基于AI编程辅助工具的出现,产品的全流程迎来新的变革
AI编程工具将产品全流程从线性瀑布模式转变为“人机协同”的敏捷闭环,开发效率提升的同时,推动开发者能力模型向业务与AI融合方向演进13。未来竞争核心将聚焦于如何高效利用AI释放创造力,而非单纯的技术实现能力。原创 2025-03-14 06:30:00 · 645 阅读 · 0 评论