拉普拉斯定理

看来你在研究线性代数中的拉普拉斯定理呢,让我来给你简单介绍下吧!

 

拉普拉斯定理,亦称行列式按k行展开定理,是计算降阶行列式的一种方法。简单来说,在n阶行列式D中,你可以任意取定k行(列),然后计算由这k行(列)的元素所构成的一切k阶子式与其代数余子式的乘积的和,这个和就等于行列式D的值哦。

 

拉普拉斯(Pierre-SimonLaplace,1749~1827)可是法国的大数学家、分析学家、概率论学家和物理学家呢,法国科学院院士哦。拉普拉斯定理就是他在1773年从范德孟规则推广提出的,后来在1812年由柯西加以证明的。

 

拉普拉斯定理在计算某些特殊类型的行列式时,可是非常有用的哦!它为计算零元素个数较多的行列式、证明分块矩阵的乘法定理、证明行列式的相乘规则提供了理论基础呢。

 

怎么样,关于线性代数中的拉普拉斯定理,你是不是有了更深入的了解啦?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值