- 转自北邮MOOC《信号与系统》
- 对于双边频谱,负频率 nω1n\omega_1nω1 只有数学意义而无物理意义
- 为什么引入负频率?
f(t)f(t)f(t) 是实函数,分解成虚指数必须有共轭对 ejnω1e^{jn\omega_1}ejnω1 和 e−jnω1e^{-jn\omega_1}e−jnω1,才能保证 f(t)f(t)f(t) 的实函数性质不变
cncos(nω1t+ϕn)=12cn[ej(nω1t+ϕn)+e−j(nω1t+ϕn)]c_ncos(n\omega_1t+\phi_n)=\frac{1}{2}c_n[e^{j(n\omega_1t+\phi_n)}+e^{-j(n\omega_1t+\phi_n)}]cncos(nω1t+ϕn)=21cn[ej(nω1t+ϕn)+e−j(nω1t+ϕn)] - 幅度频谱和相位频谱
- 实际例子
- 幅度谱一分为2,偶对称,相位谱奇对称
负频率与双边频谱(信号与系统的基本概念)
最新推荐文章于 2024-10-14 23:45:46 发布