图神经网络(GNN)是否使用梯度下降更新参数?
是的,图神经网络(GNN)通常使用梯度下降(Gradient Descent)来更新参数,类似于传统的深度学习模型(如 CNN、RNN)。但是,由于 GNN 的特殊性(如图结构、邻居信息传播等),梯度下降的实现方式与标准的深度学习略有不同。
1. GNN 训练中的梯度下降
在 GNN 中,训练过程通常包括以下步骤:
-
前向传播(Forward Pass)
- 通过 消息传递(Message Passing) 或 图卷积(Graph Convolution) 计算每个节点的表示(Embedding)。
- 例如,GCN(Graph Convolutional Network) 计算:
H(l+1)=σ(D~−12A~D~−12H(l)W(l)) H^{(l+1)} = \sigma\left( \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right) H(l+1)=σ(D~−21A~D~−