图神经网络(GNN)是否使用梯度下降更新参数?

图神经网络(GNN)是否使用梯度下降更新参数?

是的,图神经网络(GNN)通常使用梯度下降(Gradient Descent)来更新参数,类似于传统的深度学习模型(如 CNN、RNN)。但是,由于 GNN 的特殊性(如图结构、邻居信息传播等),梯度下降的实现方式与标准的深度学习略有不同。


1. GNN 训练中的梯度下降

在 GNN 中,训练过程通常包括以下步骤:

  1. 前向传播(Forward Pass)

    • 通过 消息传递(Message Passing)图卷积(Graph Convolution) 计算每个节点的表示(Embedding)。
    • 例如,GCN(Graph Convolutional Network) 计算:
      H(l+1)=σ(D~−12A~D~−12H(l)W(l)) H^{(l+1)} = \sigma\left( \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right) H(l+1)=σ(D~21A~D~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值