一、线程处理
目的:多线程方式处理数据,效率高、防止系统卡顿
二、Tensorflow环境搭建
activate nlp
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu
(我的环境是python 3.7、tensorflow-gpu 1.13.1)
这里在安装完tensorflow以后,在导入模块时会出现ImportError: DLL load failed: 找不到指定的模块。
我尝试过的解决方法
1、安装 Microsoft Visual C++ 2017 Redistributable
附上百度云安装链接:https://pan.baidu.com/s/1FoFqH01_YkG54z6XFc9HRg
2、在pycharm中更新pillow为最新版本
3、在pycharm中安装tensorflow-gpu
最后命令框中输入conda list,已有tensorflow-gpu
都试一下,然后解决了,卡了一下午,超开心哈哈哈!
附安装cuda和cudnn的参考教程:https://blog.csdn.net/xiaohuihui1994/article/details/83589701
附:
1、什么是CUDA
CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
2、什么是CUDNN
NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。
3、CUDA与CUDNN的关系
CUDA看作是一个工作台,上面配有很多工具,如锤子、螺丝刀等。cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具,比如它就是个扳手。但是CUDA这个工作台买来的时候,并没有送扳手。想要在CUDA上运行深度神经网络,就要安装cuDNN,就像你想要拧个螺帽就要把扳手买回来。这样才能使GPU进行深度神经网络的工作,工作速度相较CPU快很多。