-
参数量和FLOPS的计算:
参数量和计算量的计算方式也不太相同,计算量需要在参数量的基础上,乘以输入feature map的H和W,以及输出feature map的H’ 和W‘。 -
caffe中,depthwise conv未必比普通卷积快:
https://www.zhihu.com/question/265434464
https://www.zhihu.com/question/281807048
-
CNN中的bias参数可以去掉:有了BN
https://github.com/kuangliu/pytorch-cifar/issues/52
-
关于Padding 作用的解释:
https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7
-
可分离卷积:
https://yinguobing.com/separable-convolution/
数据增强相关
https://stackoverflow.com/questions/51677788/data-augmentation-in-pytorch
可见,是在并没有改变原始数据集的大小。