小米、搜狗、TW等机器学习算法工程师面试总结

本文分享了作者在小米、搜狗、便利蜂等公司面试算法工程师的经历,包括具体面试题目及感受,为准备算法面试者提供实战参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下机器学习算法工程师的面试题目,出自晓文学习笔记,阅读更多文章,欢迎加入晓文的公众号:

640?wx_fmt=jpeg


小米面试

一面:
1、问项目
2、然后是三道笔试题,笔试题做完之后就结束了,笔试题三道题:
1)子数组最大和
2)堆排序
3)数组中出现次数最多的K个数


二面:
1、包含重复数字的无序数组,找到所有加和等于target的索引对。
2、三色旗问题 ,这道题没答上来,已经决定要凉凉了。
https://blog.csdn.net/u011200844/article/details/43227301

3、后面问了一些项目。


搜狗面试

总体感觉问简历项目居多,其他方面问的比较少,可能我不太符合这么一个需求吧,面试官说在搜索推荐领域,理解用户的需求是十分重要的,因此可能自然语言处理需要有一定的基础吧。


一面:
1、问简历
2、主要有几道算法题吧:
大数相乘
动态规划题
有重复数字的排序数组的二分搜索问题。


二面:
1、问简历项目
2、有负数存在的排序数组,按照数的绝对值进行排序
3、介绍了一下搜狗搜索这边主要负责的事情


三面:
1、问项目,主要问了你在这个项目中的主要职责是什么
2、从一个矩阵的左上角到右下角,只能向右或向下,一共有多少种走法?有比动态规划时间复杂度更低的算法么?如果有,时间复杂度是多少?
3、如果在上面问题的基础上允许向左走,但是一条路径中每一个位置只能经过一次,问一共有多少种走法,我答了回溯法,问回溯法的复杂度是多少?
4、有什么问题想问我?



便利蜂

一面:
1、链表反转
2、如何预测一家店分品类的销量
这里没有考虑到的一点是:商家可能存在的活动,比如折扣、满减活动、满赠活动等


二面:
1、介绍一个你了解的算法
我讲了SVM。中间问了几个问题
1)几何间隔是什么
2)核函数的作用是什么
2、类别变量,可以不用one-hot么?
3、如果有一万个地理坐标,转换成1-10000的数,可以用决策树么?


三面:
1、问项目

流程非常快。。。



ThoughtWorks

ThoughtWorks面试总的来说体验非常棒,尤其是算法加面的时候,面试官还给我点了美团外卖。

笔试:一道小小的编程项目


HR面:
1、先介绍一下项目
2、哪的人
3、对户口是否有要求
4、期望的薪资
5、为什么不留美团要来TW。
6、一个间断的英语面试,不过我说好几年没学习英语了,面试官就放弃了。


技术面:
1、根据笔试作业,提出新的需求,要自带电脑并接投影仪,面试官看着你写代码
2、问项目
可能面试官非算法面试官吧,也没问很多技术问题。

三天后收到消息,拿到offer了,不过想要是算法工程师的话,需要进行一轮加面。如果加面不通过,可以给软件开发工程师的offer,不管怎样,也算秋招的第一个offer了嘛。


加面:
1、指针网络介绍
2、指针网络/seq2seq的区别/你们的项目可不可以用seq2seq
3、强化学习DQN介绍
4、强化学习的应用场景
这里我说了一个序列决策,比如新闻的分屏推荐
5、完整介绍一下推荐系统
先讲了协同过滤,后来发现讲不下去了,干脆直接讲ctr预估,从传统方法LR、FM、FFM、GBDT+LR到深度学习方法再到强化学习方法。
6、DeepFM介绍
7、Abtest是怎么做的
8、Beam-Search介绍



推荐阅读:

如何拿下10个算法工程师offer,不可错过!

Python绘制玫瑰和佩奇

Python数据分析学习路线个人总结


640?wx_fmt=jpeg

Python与算法社区

 点个好看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值