LeetCode0096-不同的二叉搜索树
题目:
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
代码:
/**
* 0096-不同的二叉搜索树
* 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
* <p>
* 示例:
* <p>
* 输入: 3
* 输出: 5
* 解释:
* 给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
* <p>
* 1 3 3 2 1
* \ / / / \ \
* 3 2 1 1 3 2
* / / \ \
* 2 1 2 3
*/
/**
* 动态规划
* 思路:给定一个有序序列 1...n ,为了构建一棵二叉搜索树,可以遍历每个数字 i,将该数字作为树根,将
* 1...(i-1)序列作为左子树,将 (i+1)...n 序列作为右子树,接着可以按照同样的方式递归构建左子树和
* 右子树
*
* 算法:
* 题目要求计算不同二叉搜索树的个数。可以定义俩个函数
* G(n):长度为 n 的序列构成不同的二叉搜索树的个数
* F(i,n):以i为根节点,序列长度为n的不同二叉搜索树的个数(1<= i<=n)
* 可见:G(n)是需要求解的函数
* G(n) = F(1,n) + F(2,n) +...+ F(n,n)
* 对于边界条件
* G(0) = 1
* G(1) = 1
*
* 给定序列 1...n ,选择数字 i 作为根,则根为 i 的所有二叉搜索树的集合是左子树集合和右子树集合的
* 笛卡尔积,对于笛卡尔积中的每个元素,加上根节点之后形成完整的二叉搜索树。
*
* F(i,n) = G(i-1)*G(n-i)
*
* 所以 G(n) = G(0)*G(n-1) + G(1)*G(n-2) + G(2)*G(n-3) + ...
*
*/
class Solution01 {
public int numTrees(int n) {
int[] G = new int[n + 1];
G[0] = G[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= i; j++) {
G[i] += G[j - 1] * G[i - j];
}
}
return G[n];
}
}
/**
* 卡特兰数
*/
class Solution02 {
public int numTrees(int n) {
// 使用long防止计算过程中产生溢出
long c = 1;
for (int i = 0; i < n; i++) {
c = c * 2 * (2 * i + 1) / (i + 2);
}
return (int) c;
}
}
/**
* 测试
*/
public class Study0096 {
public static void main(String[] args) {
System.out.println(new Solution02().numTrees(3));
}
}