自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 【LeetCode-链表-两数相加-GO语言 100%beat】

【LeetCode-链表-两数相加-GO语言 100%beat】 提交结果: 题目描述:【难度】中等 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数都不会以 0 开头。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/add-two-numbers 示例1: 输入:l1 = [2,4

2021-03-18 15:38:05 295

原创 【GO语言实现字符串匹配算法-KMP算法】

【GO语言实现字符串匹配算法-KMP算法】 KMP算法原理说明: KMP算法是一种改进的字符串匹配算法,是有D.E.Knuth,J.H.Morris和V.R.Pratt提出的,所以被称为KMP算法。 特点:相比较传统的暴力的字符串匹配算法,该算法利用了匹配失败后的信息,从而达到减少目标串与样本串的匹配次数,时间复杂度O(m+n) KMP算法的实现关键点是如何求解出部分匹配表 要理解如何求解部分匹配表首先得知道两个概念:前缀与后缀 前缀:一串字符串除了最后一个字符的字符串的全部头部字符组合 后缀: 一串字符串

2021-03-16 17:27:08 1595 1

原创 【数据结构-堆栈(链栈)GO语言实现】

【数据结构-堆栈(链栈)GO语言实现】 特点:相比较顺序存储结构的堆栈,链式堆栈可以无限增加元素。 看完代码,可以知道和前面的单链表实现是一个原理,所以要是想把链式存储结构学好,搞清楚单链表的设计就可以了 堆栈的主代码 linkedStack.go package linkedStack import "fmt" //堆栈特点是后进先出的原则 type LinkedStack struct{ Data interface{} Next *LinkedStack } type StackPointe

2021-03-15 20:39:45 304

原创 【数据结构-堆栈(顺序存储)GO语言实现】

【数据结构-堆栈(顺序存储)GO语言实现】 顺序存储的堆栈可以看作是一个操作被限制的数组,遵循着后进先出**(LIFO)**的原则。 顺序存储的堆栈代码arrayStack.go package stack import "fmt" //使用顺序存储实现堆栈数据结构 type Stack struct{ Top int //设置栈顶指针,由于Go语言的指针不能进行偏移与计算属于安全指针类型,所以这里采用一个存储空间来记录这个栈顶元素的位置 Data [10]interface{} //定义该栈的大

2021-03-12 19:31:09 260

原创 【数据结构-单链表GO语言实现】

** 【数据结构-单链表GO语言实现】 ** 主代码 linkedlist.go package linkedlist import ( "fmt" "reflect" ) //创建链表节点 type Node struct{ Data interface{} Next *Node } //创建链表的头节点 type HeadNode struct{ HeadData int //这里创建了一个特殊的头节点,包含了链表的长度信息 Next *Node } //创建可以指向链表的头指针 t

2021-03-12 15:45:18 190

原创 python神经网络搭建,实现自动存储权重值

原有的手动搭建的神经网络,无法保存训练后的权重值,导致每次运行的时候都要重新训练一次,要耗费很多时间,那怎么样来保存训练后的权重呢? 数据的保存最好的方法就是写入到文件中去,我的方法就是在神经网络训练完后将权重值写到文件中去,下一次运行程序的时候判断一下这个文件是否存在,如果存在就直接将它的值赋给权重变量,如果不存在就按正常流程来进行训练然后得到权重值。代码如下: 这是我在上一篇文章里面代码基础上改进的 # -*- coding: utf-8 -*- """ Spyder Editor This is a

2020-08-04 17:36:20 2136 1

原创 手动搭建神经网络-python

构建神经网络: 神经网路示意图: Input:代表输入层、hidden:代表隐藏层、output:代表输出层 W(i,j)代表输入层到隐藏层的权重 h(i,j)代表隐藏层到输出层的权重 推导:从输入层到隐藏层之间的关系式是什么?我们先简单话讨论,怎么由输入层得到H_1(隐藏层的第一个节点):i_1w1,1+i_2w2,1+i_3*w3,1=H_1 这个算式我们是不是可以用矩阵的写法给表达出来呢, 推广到所有节点上可以得到: 同理我们也可以得到从隐藏层到输出层的关系式: 由此我们可以得到:输入层权重x

2020-08-03 19:04:03 753 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除