设备映射:规避运行大型语言模型时的内存溢出错误

设备映射是 Hugging Face 在 Accelerate 库中实现的一项功能。它将大型语言模型(LLM)分割成较小的部分,可以分别加载到不同设备上:GPU 显存、CPU 内存和硬盘。

 我将解释为何即使使用设备映射,仍可能因 GPU 触发内存不足(OOM)错误

GPU 显存中存储的不仅仅是大语言模型(LLM)本身

设备映射通过处理 LLM 加载的所有环节来避免 OOM 错误:包括空张量创建、权重复制等。它能最大化利用 GPU 上的可用显存(VRAM)。

例如若使用 A100 48GB 显卡,设备映射会尝试将全部 48GB 显存用于 LLM。仅保留几 GB 显存供 GPU 后续可能执行的其他操作使用。

你的 GPU 上还需要一些空间来存储 CUDA 内核、其他各种张量,以及操作系统图形用户界面(GUI)——如果你将屏幕连接到 GPU 的话(Ubuntu 系统会占用 2GB 内存)。设备映射功能无法预先知道其他进程会消耗多少内存。

因此我们需要预留部分内存以防万一,特别是在主系统 GPU 上。

 为你的 GPU 上的大语言模型(LLM)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

runner000001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值