https://blog.csdn.net/zhangchuang601/article/details/79626511
准备工作:
增、删、改、查的方法有很多很多种,这里只展示出常用的几种。
import numpy as np
a = np.array([[1,2],[3,4],[5,6]])#创建3行2列二维数组。
a
array([[1, 2],
[3, 4],
[5, 6]])a = np.zeros(6)#创建长度为6的,元素都是0一维数组
a = np.zeros((2,3))#创建2行3列,元素都是0的二维数组
a = np.ones((2,3))#创建2行3列,元素都是1的二维数组
a = np.empty((2,3)) #创建2行3列,未初始化的二维数组
a = np.arange(6)#创建长度为6的,元素都是0一维数组array([0, 1, 2, 3, 4, 5])
a = np.arange(1,7,1)#结果与np.arange(6)一样。第一,二个参数意思是数值从1〜6,不包括7.第三个参数表步长为1.
a = np.linspace(0,10,7) # 生成首位是0,末位是10,含7个数的等差数列[ 0. 1.66666667 3.33333333 5. 6.66666667 8.33333333 10. ]
a = np.logspace(0,4,5)#用于生成首位是100,末位是104,含5个数的等比数列。[ 1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03 1.00000000e+04]
增a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[10,20],[30,40],[50,60]])
np.vstack((a,b))
array([[ 1, 2],
[ 3, 4],
[ 5, 6],
[10, 20],
[30, 40],
[50, 60]])np.hstack((a,b))
array([[ 1, 2, 10, 20],
[ 3, 4, 30, 40],
[ 5, 6, 50, 60]])
不同维数的数组直接相加显然是不允许的。但是可以用一个n行列向量和一个m列行向量构造出一个n×m矩阵
a = np.array([[1],[2]])
a
array([[1],
[2]])b=([[10,20,30]])#生成一个list,注意,不是np.array。
b
[[10, 20, 30]]a+b
array([[11, 21, 31],
[12, 22, 32]])c = np.array([10,20,30])
c
array([10, 20, 30])c.shape
(3,)a+c
array([[11, 21, 31],
[12, 22, 32]])
查a
array([[1, 2],
[3, 4],
[5, 6]])a[0] # array([1, 2])
a[0][1]#2
a[0,1]#2
b = np.arange(6)#array([0, 1, 2, 3, 4, 5])
b[1:3]#右边开区间array([1, 2])
b[:3]#左边默认为 0array([0, 1, 2])
b[3:]#右边默认为元素个数array([3, 4, 5])
b[0:4:2]#下标递增2array([0, 2])
NumPy的where函数使用
np.where(condition, x, y),第一个参数为一个布尔数组,第二个参数和第三个参数可以是标量也可以是数组。
cond = numpy.array([True,False,True,False])
a = numpy.where(cond,-2,2)# [-2 2 -2 2]
cond = numpy.array([1,2,3,4])
a = numpy.where(cond>2,-2,2)# [ 2 2 -2 -2]
b1 = numpy.array([-1,-2,-3,-4])
b2 = numpy.array([1,2,3,4])
a = numpy.where(cond>2,b1,b2) # 长度须匹配# [1,2,-3,-4]
改
a = np.array([[1,2],[3,4],[5,6]])
a[0] = [11,22]#修改第一行数组[1,2]为[11,22]。
a[0][0] = 111#修改第一个元素为111,修改后,第一个元素“1”改为“111”。
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[10,20],[30,40],[50,60]])
a+b #加法必须在两个相同大小的数组键间运算。
array([[11, 22],
[33, 44],
[55, 66]])
不同维数的数组直接相加显然是不允许的。但是可以用一个n行列向量和一个m列行向量构造出一个n×m矩阵
a = np.array([[1],[2]])
a
array([[1],
[2]])b=([[10,20,30]])#生成一个list,注意,不是np.array。
b
[[10, 20, 30]]a+b
array([[11, 21, 31],
[12, 22, 32]])c = np.array([10,20,30])
c
array([10, 20, 30])c.shape
(3,)a+c
array([[11, 21, 31],
[12, 22, 32]])
数组和一个数字的加减乘除的运算,相当于一个广播,把这个运算广播到各个元素中去。
a = np.array([[1,2],[3,4],[5,6]])
a*2#相当于a中各个元素都乘以2.类似于广播。
array([[ 2, 4],
[ 6, 8],
[10, 12]])a**2
array([[ 1, 4],
[ 9, 16],
[25, 36]])a>3
array([[False, False],
[False, True],
[ True, True]])a+3
array([[4, 5],
[6, 7],
[8, 9]])a/2
array([[0.5, 1. ],
[1.5, 2. ],
[2.5, 3. ]])
删
方法一:
利用查找中的方法,比如a=a[0],操作完居后,a的行数只剩一行了。
a = np.array([[1,2],[3,4],[5,6]])
a[0]
array([1, 2])
方法二:a = np.array([[1,2],[3,4],[5,6]])
np.delete(a,1,axis = 0)#删除a的第二行。
array([[1, 2],
[5, 6]])np.delete(a,(1,2),0)#删除a的第二,三行。
array([[1, 2]])np.delete(a,1,axis = 1)#删除a的第二列。
array([[1],
[3],
[5]])
方法三:
先分割,再按切片a=a[0]赋值。
a = np.array([[1,2],[3,4],[5,6]])
np.hsplit(a,2)#水平分割(搞不懂,明明是垂直分割嘛?)
[array([[1],
[3],
[5]]), array([[2],
[4],
[6]])]np.split(a,2,axis = 1)#与np.hsplit(a,2)效果一样。
np.vsplit(a,3)
[array([[1, 2]]), array([[3, 4]]), array([[5, 6]])]np.split(a,3,axis = 0)#与np.vsplit(a,3)效果一样。
————————————————
版权声明:本文为CSDN博主「夏雨淋河」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zhangchuang601/article/details/79626511