刷题第49天 | 121.买卖股票的最佳时机、122.买卖股票的最佳时机II

本文解析了两道经典股票交易问题的算法解决方案,包括动态规划与贪心算法。通过详细阐述不同状态转移方程,帮助理解如何求解单一交易的最佳时机及多次交易的最大利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

121. Best Time to Buy and Sell Stock

题目链接:121. Best Time to Buy and Sell Stock
思路链接:代码随想录动态规划-买卖股票的最佳时机

思路

这道题比较快的解法可以用动态规划和贪心算法。这里主要阐述的是动态规划的思路。
第i天不持有股票不一定是在第i天卖出股票,也有可能之前已经卖出了。

  1. 确定dp数组
    1.1 到第i天持有股票所拥有的最大现金 dp[i][0]
    1.2 到第i天不持有股票拥有的最大现金 dp[i][1]
  2. 确定递归数组
    2.1 到第i天持有股票所拥有的最大现金 dp[i][0] = Math.max(dp[i - 1][0], -dp[i]);
    要不就是昨天持有股票所得的最大现金,要不就是今天买入股票
    2.2 到第i天不持有股票所拥有的最大现金 dp[i][1] = Math.max(prices[i] + dp[i - 1][0], dp[i - 1][1]);
    要不就是今天卖出,要不就是昨天不持有股票拥有的最大现金
  3. 初始化数组
    dp[0][0] -= prices[0]; 第0天持有股票所得的最大现金
    dp[0][1] = 0; 到第0天不持有股票所拥有的最大现金
  4. 遍历顺序
  5. 打印数组

贪心算法比较简单,就是找左侧最小的值,从而得到当前遍历的最大差值,最终得到整个数组的最大差值。

Code

// 时间复杂度: O(n)
// 空间复杂度: O(n)
class Solution {
    public int maxProfit(int[] prices) {
        // 1. 确定dp数组
        // 1.1 到第i天持有股票所拥有的最大现金 dp[i][0]
        // 1.2 到第i天不持有股票拥有的最大现金 dp[i][1]
        int[][] dp = new int[prices.length][2];
        
        // 2. 确定递归数组
        // 2.1 到第i天持有股票所拥有的最大现金 dp[i][0] = Math.max(dp[i - 1][0], -dp[i]); 要不就是昨天持有股票所得的最大现金,要不就是今天买入股票
        // 2.2 到第i天不持有股票所拥有的最大现金 dp[i][1] = Math.max(prices[i] + dp[i - 1][0], dp[i - 1][1]); 要不就是今天卖出,要不就是昨天不持有股票拥有的最大现金
        // 3. 初始化数组
        dp[0][0] -= prices[0]; // 第0天持有股票所得的最大现金
        dp[0][1] = 0; // 到第0天不持有股票所拥有的最大现金
        // 4. 遍历顺序
        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], 0 - prices[i]);
            dp[i][1] = Math.max(prices[i] + dp[i - 1][0], dp[i - 1][1]);

            // 5. 打印数组
            // for (int[] row : dp) {
            //     for (int item : row) {
            //         System.out.print(item + " ");
            //     }
            //     System.out.println("");
            // }
        }
        return dp[prices.length - 1][1];
    }
}
// 时间复杂度: O(n)
// 空间复杂度: O(1)
class Solution {
    public int maxProfit(int[] prices) {
        // 贪心算法
        int low = Integer.MAX_VALUE;
        int result = 0;
        for (int i = 0; i < prices.length; i++) {
            low = Math.min(low, prices[i]);
            result = Math.max(result, prices[i] - low);
        }
        return result;
    }
}

122. Best Time to Buy and Sell Stock II

题目链接:122. Best Time to Buy and Sell Stock II
思路链接:代码随想录动态规划-买卖股票的最佳时机II

思路

贪心算法之间已经写过文章了
动态规划的dp数组与上一题一样,只不过这一题可以买卖很多次。递推公式发生了变化:

  1. 到第i天时持有股票拥有的最大金额为dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
  2. 到第i天时不持有股票拥有的最大金额为dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

Code

class Solution {
    public int maxProfit(int[] prices) {
        // 1. 定义dp数组
        // 1.1 到第i天时持有股票拥有的最大金额为dp[i][0]
        // 1.2 到第i天时不持有股票拥有的最大金额为dp[i][1]
        int[][] dp = new int[prices.length][2];
        // 2. 确定递推公式
        // 2.1 到第i天时持有股票拥有的最大金额为dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
        // 2.2 到第i天时不持有股票拥有的最大金额为dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        // 3. 初始化数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        // 4. 遍历顺序
        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
            // 5. 打印数组
            // for (int[] row : dp) {
            //     for (int item : row) {
            //         System.out.print(item + " ");
            //     }
            //     System.out.println("");
            // }
        }
        return dp[prices.length - 1][1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值