题目描述
给定一个长度为 n 的 0 索引整数数组 nums。初始位置在下标 0。
每个元素 nums[i] 表示从索引 i 向后跳转的最大长度。换句话说,如果你在索引 i 处,你可以跳转到任意 (i + j) 处:
- 0 <= j <= nums[i] 且
- i + j < n
返回到达 n - 1 的最小跳跃次数。测试用例保证可以到达 n - 1。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
提示:
- 1 <= nums.length <= 104
- 0 <= nums[i] <= 1000
题目保证可以到达 n - 1
思考
贪心算法的核心是:在每次跳跃前,选择当前可跳跃范围内能够到达的最远位置作为下一次跳跃的终点。这种策略通过最大化每次跳跃的覆盖范围,确保用最少的跳跃次数到达终点。
关键在于:不是每次都跳当前位置的最大距离,而是在当前可及范围内选择能延伸到最远的位置作为下次跳跃的起点,这样能最大化后续的选择空间,从而保证全局最优解。
算法过程
-
初始化变量:
fartest
:记录当前能到达的最远距离currentEnd
:记录当前跳跃区间的终点(初始为0)jumps
:记录跳跃次数(初始为0)
-
遍历数组(不包括最后一个元素,因为到达最后一个元素即完成):
- 更新
fartest
为当前位置可到达的最远距离(i + nums[i]
)与现有fartest
的最大值 - 当到达当前跳跃区间的终点(
i === currentEnd
)时:- 跳跃次数加1
- 将
currentEnd
更新为fartest
(开始新的跳跃区间) - 若
currentEnd
已覆盖终点,则提前结束
- 更新
-
返回跳跃次数
时空复杂度分析
- 时间复杂度:O(n),只需遍历一次数组
- 空间复杂度:O(1),仅使用常数级额外空间
代码
/**
* @param {number[]} nums
* @return {number}
*/
var jump = function(nums) {
const n = nums.length;
let fartest = 0, currentEnd = 0, jumps = 0;
for (let i = 0; i < n-1; i++) {
fartest = Math.max(i + nums[i], fartest);
if (currentEnd === i) {
jumps++;
if (currentEnd >= n-1) {
break;
}
currentEnd = fartest;
}
}
return jumps;
};