题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
4. 1 阶 + 1 阶 + 1 阶
5. 1 阶 + 2 阶
6. 2 阶 + 1 阶
提示:
- 1 <= n <= 45
思考
爬楼梯问题可通过动态规划求解,核心是利用“到达当前台阶的方案数由前序台阶推导而来”的最优子结构:
- 每次只能爬1阶或2阶楼梯,因此到达第
i
阶的前一步只有两种可能:从第i-1
阶爬1阶,或从第i-2
阶爬2阶。 - 定义
dp[i]
为到达第i
阶的总方案数,则递推关系为:dp[i] = dp[i-1] + dp[i-2]
(两种前序方案数之和)。 - 初始条件:
- 第0阶(起点):
dp[0] = 0
(无实际爬楼动作); - 第1阶:仅1种方案(直接爬1阶),故
dp[1] = 1
; - 第2阶:两种方案(1+1或直接爬2阶),故
dp[2] = 2
。
- 第0阶(起点):
通过从第3阶开始递推计算,最终dp[n]
即为到达第n
阶的总方案数。
代码一
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
let dp = Array(n+1).fill(0);
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
for (let i = 3; i <= n; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
};
代码二:滚动数组优化
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
if (n === 1) return 1;
let pre = 1, cur = 2;
for (let i = 3; i <= n; i++) {
let tmp = cur;
cur = pre + cur;
pre = tmp;
}
return cur;
};