【LeetCode热题100道笔记】爬楼梯

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
4. 1 阶 + 1 阶 + 1 阶
5. 1 阶 + 2 阶
6. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

思考

爬楼梯问题可通过动态规划求解,核心是利用“到达当前台阶的方案数由前序台阶推导而来”的最优子结构:

  • 每次只能爬1阶或2阶楼梯,因此到达第i阶的前一步只有两种可能:从第i-1阶爬1阶,或从第i-2阶爬2阶。
  • 定义dp[i]为到达第i阶的总方案数,则递推关系为:dp[i] = dp[i-1] + dp[i-2](两种前序方案数之和)。
  • 初始条件:
    • 第0阶(起点):dp[0] = 0(无实际爬楼动作);
    • 第1阶:仅1种方案(直接爬1阶),故dp[1] = 1
    • 第2阶:两种方案(1+1或直接爬2阶),故dp[2] = 2

通过从第3阶开始递推计算,最终dp[n]即为到达第n阶的总方案数。

代码一

/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    let dp = Array(n+1).fill(0);
    dp[0] = 0;
    dp[1] = 1;
    dp[2] = 2;

    for (let i = 3; i <= n; i++) {
        dp[i] = dp[i-1] + dp[i-2];
    }
    
    return dp[n];
};

代码二:滚动数组优化

/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    if (n === 1) return 1;

    let pre = 1, cur = 2;
    for (let i = 3; i <= n; i++) {
        let tmp = cur;
        cur = pre + cur;
        pre = tmp;    
    }
    
    return cur;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值