【LeetCode 热题100道笔记】最小路径和

题目描述

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:
在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

思考

采用动态规划(DP)思想:由于机器人仅能向右或向下移动,到达网格中某位置的最小路径和,取决于“从上方位置到达此处的路径和”与“从左方位置到达此处的路径和”中的较小值,再加上当前位置的数字。通过构建DP表存储每个位置的最小路径和,可逐步推导得出从起点到终点的最小路径总和。

算法过程

  1. 初始化DP表

    • 创建m×n的二维数组dpdp[i][j]表示到达第i行第j列的最小路径和
    • 起点dp[0][0]直接等于网格起点值grid[0][0]
    • 第一列:只能从上方位置移动而来,故dp[i][0] = dp[i-1][0] + grid[i][0](累加上方路径和与当前位置值)
    • 第一行:只能从左方位置移动而来,故dp[0][i] = dp[0][i-1] + grid[0][i](累加左方路径和与当前位置值)
  2. 填充DP表

    • 对其余位置(i,j)(i>0且j>0):
      • 先取上方dp[i-1][j]和左方dp[i][j-1]中的最小值
      • 再加上当前位置的数字grid[i][j],赋值给dp[i][j]
      • 公式:dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  3. 结果dp[m-1][n-1]即为从左上角到右下角的最小路径总和

时空复杂度分析

  • 时间复杂度:O(m×n),需遍历整个网格一次,每个位置的计算仅需常数时间
  • 空间复杂度:O(m×n),用于存储m×n的DP表(可优化至O(min(m,n)),通过滚动数组仅保存当前行/列的状态,减少空间占用)

代码

/**
 * @param {number[][]} grid
 * @return {number}
 */
var minPathSum = function(grid) {
    const [m, n] = [grid.length, grid[0].length];
    const dp = Array.from({length: m}, () => Array(n));
    
    dp[0][0] = grid[0][0];
    for (let i = 1; i < m; i++) {
        dp[i][0] = dp[i-1][0] + grid[i][0];
    }
    for (let i = 1; i < n; i++) {
        dp[0][i] = dp[0][i-1] + grid[0][i];
    }

    for (let i = 1; i < m; i++) {
        for (let j = 1; j < n; j++) {
            dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
        }
    }
    
    return dp[m-1][n-1];
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值