题目描述
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 200
- 0 <= grid[i][j] <= 200
思考
采用动态规划(DP)思想:由于机器人仅能向右或向下移动,到达网格中某位置的最小路径和,取决于“从上方位置到达此处的路径和”与“从左方位置到达此处的路径和”中的较小值,再加上当前位置的数字。通过构建DP表存储每个位置的最小路径和,可逐步推导得出从起点到终点的最小路径总和。
算法过程
-
初始化DP表:
- 创建m×n的二维数组
dp
,dp[i][j]
表示到达第i行第j列的最小路径和 - 起点
dp[0][0]
直接等于网格起点值grid[0][0]
- 第一列:只能从上方位置移动而来,故
dp[i][0] = dp[i-1][0] + grid[i][0]
(累加上方路径和与当前位置值) - 第一行:只能从左方位置移动而来,故
dp[0][i] = dp[0][i-1] + grid[0][i]
(累加左方路径和与当前位置值)
- 创建m×n的二维数组
-
填充DP表:
- 对其余位置
(i,j)
(i>0且j>0):- 先取上方
dp[i-1][j]
和左方dp[i][j-1]
中的最小值 - 再加上当前位置的数字
grid[i][j]
,赋值给dp[i][j]
- 公式:
dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
- 先取上方
- 对其余位置
-
结果:
dp[m-1][n-1]
即为从左上角到右下角的最小路径总和
时空复杂度分析
- 时间复杂度:O(m×n),需遍历整个网格一次,每个位置的计算仅需常数时间
- 空间复杂度:O(m×n),用于存储m×n的DP表(可优化至O(min(m,n)),通过滚动数组仅保存当前行/列的状态,减少空间占用)
代码
/**
* @param {number[][]} grid
* @return {number}
*/
var minPathSum = function(grid) {
const [m, n] = [grid.length, grid[0].length];
const dp = Array.from({length: m}, () => Array(n));
dp[0][0] = grid[0][0];
for (let i = 1; i < m; i++) {
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for (let i = 1; i < n; i++) {
dp[0][i] = dp[0][i-1] + grid[0][i];
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
}
}
return dp[m-1][n-1];
};