【LeetCode 热题100道笔记】编辑距离

编辑距离算法解析与实现

题目描述

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)

示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

思考

动态规划(DP):通过构建二维DP表,将“将word1i个字符转为word2j个字符的最少操作数”拆分为子问题。若当前字符相等,无需额外操作,直接继承前一子问题的结果;若字符不等,则从“替换”“删除”“插入”三种操作中选最少操作数的方案,逐步推导全局最优解。

算法过程

  1. 定义DP表与初始化

    • 构建 (m+1)×(n+1) 的二维数组 dpmword1长度,nword2长度),dp[i][j] 表示将 word1[0..i-1] 转为 word2[0..j-1] 的最少操作数。
    • 边界初始化
      • word2 为空(j=0),需删除 word1 所有字符,故 dp[i][0] = ii次删除操作)。
      • word1 为空(i=0),需插入 word2 所有字符,故 dp[0][j] = jj次插入操作)。
  2. 填充DP表
    遍历 word1word2 的每个字符(i 对应 word1i 个字符,j 对应 word2j 个字符):

    • word1[i-1] === word2[j-1](当前字符相等):
      无需操作,dp[i][j] = dp[i-1][j-1](直接继承“处理完前i-1j-1个字符”的最少操作数)。
    • word1[i-1] !== word2[j-1](当前字符不等):
      需从三种操作中选最少操作数:
      1. 替换:将 word1[i-1] 换成 word2[j-1],操作数= dp[i-1][j-1] + 1(前i-1j-1的操作数+1次替换)。
      2. 删除:删除 word1[i-1],操作数= dp[i-1][j] + 1(前i-1个字符转j个字符的操作数+1次删除)。
      3. 插入:在 word1[i-1] 后插入 word2[j-1],操作数= dp[i][j-1] + 1(前i个字符转j-1个字符的操作数+1次插入)。
        因此 dp[i][j] = Math.min(替换操作数, 删除操作数, 插入操作数)
  3. 结果dp[m][n] 即为将完整 word1 转为完整 word2 的最少操作数。

时空复杂度分析

  • 时间复杂度:O(m×n),需遍历 word1word2 的所有字符组合(共 m×n 个位置),每个位置的计算仅需常数时间。
  • 空间复杂度:O(m×n),用于存储 (m+1)×(n+1) 的DP表(可优化至 O(min(m,n)),通过滚动数组仅保存当前行和上一行的状态,减少空间占用)。

代码

/**
 * @param {string} word1
 * @param {string} word2
 * @return {number}
 */
var minDistance = function(word1, word2) {
    const [m, n] = [word1.length, word2.length];
    const dp = Array.from({length: m+1}, () => Array(n+1).fill(0));

    for (let i = 1; i <= m; i++) {
        dp[i][0] = i;
    }

    for (let j = 1; j <= n; j++) {
        dp[0][j] = j;
    }

    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            if (word1[i-1] === word2[j-1]) {
                dp[i][j] = dp[i-1][j-1];
            } else {
                dp[i][j] = Math.min(dp[i-1][j-1] + 1, dp[i-1][j] + 1, dp[i][j-1]+1);
            }
        }
    }

    return dp[m][n];
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值