题目描述
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
- 0 <= word1.length, word2.length <= 500
- word1 和 word2 由小写英文字母组成
思考
动态规划(DP):通过构建二维DP表,将“将word1
前i
个字符转为word2
前j
个字符的最少操作数”拆分为子问题。若当前字符相等,无需额外操作,直接继承前一子问题的结果;若字符不等,则从“替换”“删除”“插入”三种操作中选最少操作数的方案,逐步推导全局最优解。
算法过程
-
定义DP表与初始化:
- 构建
(m+1)×(n+1)
的二维数组dp
(m
为word1
长度,n
为word2
长度),dp[i][j]
表示将word1[0..i-1]
转为word2[0..j-1]
的最少操作数。 - 边界初始化:
- 若
word2
为空(j=0
),需删除word1
所有字符,故dp[i][0] = i
(i
次删除操作)。 - 若
word1
为空(i=0
),需插入word2
所有字符,故dp[0][j] = j
(j
次插入操作)。
- 若
- 构建
-
填充DP表:
遍历word1
和word2
的每个字符(i
对应word1
前i
个字符,j
对应word2
前j
个字符):- 若
word1[i-1] === word2[j-1]
(当前字符相等):
无需操作,dp[i][j] = dp[i-1][j-1]
(直接继承“处理完前i-1
和j-1
个字符”的最少操作数)。 - 若
word1[i-1] !== word2[j-1]
(当前字符不等):
需从三种操作中选最少操作数:- 替换:将
word1[i-1]
换成word2[j-1]
,操作数=dp[i-1][j-1] + 1
(前i-1
和j-1
的操作数+1次替换)。 - 删除:删除
word1[i-1]
,操作数=dp[i-1][j] + 1
(前i-1
个字符转j
个字符的操作数+1次删除)。 - 插入:在
word1[i-1]
后插入word2[j-1]
,操作数=dp[i][j-1] + 1
(前i
个字符转j-1
个字符的操作数+1次插入)。
因此dp[i][j] = Math.min(替换操作数, 删除操作数, 插入操作数)
。
- 替换:将
- 若
-
结果:
dp[m][n]
即为将完整word1
转为完整word2
的最少操作数。
时空复杂度分析
- 时间复杂度:O(m×n),需遍历
word1
和word2
的所有字符组合(共m×n
个位置),每个位置的计算仅需常数时间。 - 空间复杂度:O(m×n),用于存储
(m+1)×(n+1)
的DP表(可优化至 O(min(m,n)),通过滚动数组仅保存当前行和上一行的状态,减少空间占用)。
代码
/**
* @param {string} word1
* @param {string} word2
* @return {number}
*/
var minDistance = function(word1, word2) {
const [m, n] = [word1.length, word2.length];
const dp = Array.from({length: m+1}, () => Array(n+1).fill(0));
for (let i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (let j = 1; j <= n; j++) {
dp[0][j] = j;
}
for (let i = 1; i <= m; i++) {
for (let j = 1; j <= n; j++) {
if (word1[i-1] === word2[j-1]) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(dp[i-1][j-1] + 1, dp[i-1][j] + 1, dp[i][j-1]+1);
}
}
}
return dp[m][n];
};