深度学习中常见的数学符号

本文汇总一下机器学习的常用的数学符号,有点眼花~

数字

xxx: 标量

X{X}X:向量

xxx:标量

x\mathbf{x}x:向量

X\mathbf{X}X:矩阵

X\mathsf{X}X:张量

I\mathbf{I}I:单位矩阵

xix_ixi, [x]i[\mathbf{x}]_i[x]i:向量x\mathbf{x}xiii个元素

xijx_{ij}xij, [X]ij[\mathbf{X}]_{ij}[X]ij:矩阵X\mathbf{X}Xiii行第jjj列的元素

集合论

X\mathcal{X}X: 集合

Z\mathbb{Z}Z: 整数集合

R\mathbb{R}R: 实数集合

Rn\mathbb{R}^nRn: nnn维实数向量

Ra×b\mathbb{R}^{a\times b}Ra×b: 包含

### 常见深度学习数学符号及其含义 在深度学习中,符号的正确使用对于理解模型结构和算法至关重要。以下是深度学习常见数学符号及其含义: #### 1. 训练样本与序列相关符号 - \( x^{(i)} \) 表示第 \( i \) 个训练样本[^1]。 - \( x^{(i)<t>} \) 表示第 \( i \) 个训练样本的序列中第 \( t \) 个元素[^1]。 - \( T_x^{(i)} \) 表示第 \( i \) 个训练样本的输入序列长度[^1]。 - \( y^{(i)<t>} \) 表示第 \( i \) 个训练样本的输出数据中第 \( t \) 个元素。 - \( T_y^{(i)} \) 表示第 \( i \) 个训练样本的输出序列长度[^1]。 #### 2. 向量与矩阵相关符号 - \( a \cdot b = a_1b_1 + a_2b_2 + \ldots + a_nb_n \) 表示两个向量 \( a \) 和 \( b \) 的点积[^2]。 - \( a \cdot b = (a^T)b \) 表示通过矩阵乘法计算向量 \( a \) 和 \( b \) 的点积[^2]。 - \( A_{ij} \) 表示矩阵 \( A \) 的第 \( i \) 行第 \( j \) 列的元素。 - \( A^T \) 表示矩阵 \( A \) 的转置。 #### 3. 激活函数相关符号 - \( \sigma(z) = \frac{1}{1 + e^{-z}} \) 表示 Sigmoid 激活函数。 - \( \text{ReLU}(z) = \max(0, z) \) 表示 ReLU(Rectified Linear Unit)激活函数。 - \( \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \) 表示双曲正切激活函数。 #### 4. 损失函数相关符号 - \( L(y, \hat{y}) \) 表示预测值 \( \hat{y} \) 和真实值 \( y \) 之间的损失函数。 - \( J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)}) \) 表示参数 \( \theta \) 的成本函数,其中 \( m \) 是训练样本的数量。 #### 5. 微积分相关符号 - \( \frac{\partial J}{\partial \theta} \) 表示成本函数 \( J \) 对参数 \( \theta \) 的偏导数。 - \( \nabla_\theta J \) 表示成本函数 \( J \) 对参数 \( \theta \) 的梯度向量。 #### 6. 其他常见符号 - \( \mathbb{R}^n \) 表示 \( n \)-维实数空间。 - \( \|x\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \) 表示向量 \( x \) 的 \( L_2 \) 范数。 - \( \|A\|_F = \sqrt{\sum_{i,j} A_{ij}^2} \) 表示矩阵 \( A \) 的 Frobenius 范数。 ```python # 示例代码:计算两个向量的点积 import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) dot_product = np.dot(a, b) print(dot_product) # 输出结果为 32 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值