[Keras]LSTM()

本文详细介绍了 Keras 框架中 LSTM (长短期记忆) 层的参数配置及功能特性。LSTM 是一种特殊的循环神经网络层,用于解决序列数据中的长期依赖问题。文章解释了关键参数如 units、return_state 的作用,并提供了 LSTM 层的基本用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • keras.layers.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)
  • Long Short-Term Memory layer - Hochreiter 1997.
  • Arguments:
    • units: 正整数,输出空间的维数。Positive integer, dimensionality of the output space.
    • return_state:布尔值。是否返回除输出之外的最后一个状态。Boolean. Whether to return the last state in addition to the output. The returned elements of the states list are the hidden state and the cell state, respectively.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值