MongoDB vs MySQL vs Hive

本文对比了MySQL、MongoDB和Hive三种数据库系统,MySQL作为关系型数据库,以其数据隐私性、完整性和一致性著称,适合事务处理;MongoDB则以其快速读写、动态模式和高写入负载能力见长,适用于复杂数据存储;Hive作为数据仓库工具,适合大数据批处理作业,但不支持实时查询。三种数据库在数据存储、更新、索引和扩展性方面各有特点,适合不同的应用场景。

MySQL

mysql 是关系型数据库

优点:

  1. 在不同引擎可以有不同存储方式。
  2. 查询语句用传统sql,比较方便。
  3. 相比于mongodb,更能确保数据的隐私性和完整性以及一致性。mysql 必须使用安全套接字层SSL(安全协议)在客户端以及服务器之间加密连接。而mongodb是基于角色的访问控制。

缺点:

  1. 在处理海量数据时,效率显著变慢。

MongoDB

不是关系型,属于文档型数据库,文档(多个键值对有序存放)是基础单元,类似于关系模型的行。
存储方式: 虚拟内存+持久化。
架构特点:可以通过副本集、分片实现高可用。
适合场景:事件的记录,内容管理或者博客平台等等。
数据处理:数据是存储在硬盘上的,只不过需要经常读取的数据会被加载到内存中,将数据存储在物理内存中,从而达到高速读写

优点

  1. 速度,将热数据存储在物理内存中,读写快。
  2. 扩展性强,使用动态模式,无需预先定义结构,如字段或值类型。这种模型允许分层关系表示,数组存储,以及通过简单地添加或删除字段来更改记录结构的能力。这种NoSQL解决方案具有嵌入,自动分片和板载复制功能,可实现更好的可扩展性和高可用性。
  3. 存储格式json,对于爬虫开发来说json存储十分方便。
  4. 高写入负载,在不稳定环境中实现高可用。业务经常变动,需要不时的添加字段,那么mongodb比较适合
  5. 数据量大、且数据成分复杂的情况下,MongoDB文档数据库优于MySQL关系数据库。在MySQL中,由于数据模式受到更大的约束,所以表中的每一行都需要相同的列,这在使用大容量数据库时尤其难以管理。因此,MySQL不能像MongoDB那样轻松地处理大型和复杂的数据库。

缺点: 不支持事务。

Hive

hive首先明确并不是一个数据库,而是数据仓库
Hive 不适合用于联机事务处理 (OLTP),也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。
Hive 的特点是可伸缩(在Hadoop 的集群上动态的添加设备),可扩展、容错、输入格式的松散耦合。Hive 的入口是DRIVER ,执行的SQL语句首先提交到DRIVER驱动,然后调COMPILER解释驱动,最终解释成MapReduce 任务执行,最后将结果返回
在这里插入图片描述
主要区别:

  1. 数据存储位置:hive 建立在hadoop上,所有的hive数据都是存储在HDFS中(Hadoop分布式文件系统),而数据库可以存在本地文件系统中。
  2. 数据更新:由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不支持对局部数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用INSERT INTO…VALUES添加数据,使用UPDATE…SET修改数据。
  3. 索引:Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于MapReduce的引入,Hive可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive仍然可以体现出优势
  4. 执行:Hive中大多数查询的执行是通过Hadoop提供的MapReduce来实现
  5. 扩展性:mysql的可扩展性较低,而hive的扩展性较高
### 安装 Hive 和配置与 MongoDB 集成 #### 一、安装 Hive 为了在 CentOS 上成功安装 Hive,需按照以下方法操作: 1. **下载并解压 Hive** 下载最新版本的 Apache Hive 并将其解压缩至指定路径。可以使用 `wget` 命令完成此过程[^2]。 ```bash wget https://downloads.apache.org/hive/stable/apache-hive-3.1.2-bin.tar.gz tar -xzvf apache-hive-3.1.2-bin.tar.gz -C /usr/local/ ln -s /usr/local/apache-hive-3.1.2-bin /usr/local/hive ``` 2. **设置环境变量** 编辑 `/etc/profile` 文件以添加 Hive 的环境变量,并使更改生效。 ```bash echo 'export HIVE_HOME=/usr/local/hive' >> /etc/profile echo 'export PATH=$PATH:$HIVE_HOME/bin' >> /etc/profile source /etc/profile ``` 3. **配置 Hive 运行环境** 切换到 `$HIVE_HOME/conf/` 目录下编辑必要的文件来定义 Hive 的运行参数。 ```bash cp hive-default.xml.template hive-site.xml vi $HIVE_HOME/conf/hive-site.xml ``` 在 `hive-site.xml` 中增加如下内容以便于后续连接 MySQL 或其他元存储服务(如果需要)。 ```xml <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://localhost:3306/metastore?createDatabaseIfNotExist=true</value> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.cj.jdbc.Driver</value> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>root</value> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>password</value> </property> ``` --- #### 二、配置 HiveMongoDB 的集成 要实现 HiveMongoDB 的无缝协作,可以通过 MongoDB 提供的 Hive Connector 来达成目标。 1. **安装 MongoDB-Hive Connector** 下载适用于当前 Hive 版本的 MongoDB-Hive Connector JAR 包,并放置到 Hive 的 lib 路径中。 ```bash mkdir -p $HIVE_HOME/lib/mongo cd $HIVE_HOME/lib/mongo wget https://repo.mongodb.com/artifactory/repo/com/mongodb/mongo-hadoop-core/latest.jar mv latest.jar mongo-hadoop-core-latest.jar ``` 2. **修改 Hive-Site.XML** 更新 `hive-site.xml` 文件以支持 MongoDB 数据源。 ```xml <property> <name>hive.input.format</name> <value>org.apache.hadoop.hive.ql.io.MongoInputFormat</value> </property> <property> <name>hive.output.format</name> <value>org.apache.hadoop.hive.ql.io.MongoOutputFormat</value> </property> <property> <name>hive.mongo.input.uri</name> <value>mongodb://localhost:27017/test.user</value> </property> <property> <name>hive.mongo.output.uri</name> <value>mongodb://localhost:27017/test.new_user</value> </property> ``` 3. **创建外部表映射 MongoDB 数据集合** 使用 Hive CLI 创建一张指向 MongoDB 表的数据结构。 ```sql CREATE EXTERNAL TABLE user_mongo ( name STRING, age INT ) STORED BY 'com.mongodb.hadoop.hive.MongoStorageHandler' WITH SERDEPROPERTIES ('mongo.columns.mapping'='{"name":"name","age":"age"}'); ``` 4. **验证数据读写功能** 插入测试记录或者查询已有的文档以确认两者之间的交互正常工作。 ```sql INSERT INTO TABLE user_mongo VALUES('zhangsan', 30); SELECT * FROM user_mongo; ``` --- ### 总结 通过上述步骤,在 CentOS 系统上完成了 Hive 的部署以及与 MongoDB 的联合配置。这使得能够利用 SQL 查询语法处理 NoSQL 数据库中的非结构化信息[^1][^3]。 ```python print("Integration Completed!") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值