
源码分析
文章平均质量分 74
xyy19920105
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
针对Faster RCNN具体细节以及源码的解读之RoIPooling层
从今天开始,阅读faster rcnn的相关代码,并记录我对faster rcnn中特别的层的理解。注意,RBG大神认为CPU版本的太慢了,故有些操作CPU版压根就没有实现。RoI Pooling就是实现从原图区域映射到conv5区域最后pooling到固定大小的功能。 输入,b0 为卷积的feature map,b1 为rois。 LayerSetUp 将参数赋值。 Reshape 将原创 2015-12-28 19:09:55 · 29486 阅读 · 4 评论 -
针对Faster RCNN具体细节以及源码的解读之SmoothL1Loss层
从今天开始,阅读faster rcnn的相关代码,并记录我对faster rcnn中特别的层的理解。本篇主要是对smooth_L1_Loss层进行解读。 RBG大神认为CPU版本的太慢了,故有些操作CPU版压根就没有实现。smooth_L1_Loss是Faster RCNN提出来的计算距离的loss,文章中提到对噪声点更加鲁棒。 输入四个bottom,分别是predict,target,insi原创 2015-12-28 20:19:53 · 26996 阅读 · 3 评论 -
caffe 如何调用python层
这两天一直在研究faster rcnn的源码,可是依旧感觉云里雾里,故下定决心把caffe调用python layer的流程仔细走一遍,好明白到底是什么在调用python layer。话说 linux 调试还真是蛋疼啊,木有ide那样直接下断点,gdb又不会用,只能傻比比的不断的LOG(INFO)输出。还好最终还是明白了,我就直接顺着faster rcnn来说,并记录在此。 faster rcnn最原创 2015-12-30 12:44:59 · 10852 阅读 · 10 评论