大模型驱动的Query改写探索:PRF技术与论文解析

本文介绍了一篇典型的 PRF (
Pseudo-relevance feedback
)思路的论文,用于利用LLM来做query改写,提升召回率,召回效果。

论文地址:
Large Language Models are Strong Zero-Shot Retriever

一、PRF的流程

如下图所示,先用原始的query,进行一次召回。然后基于找回的10条文档,喂给模型,让模型生成5个答案。然后在用模型生成的答案做我新的query再做一次召回。最终得到最终的结果。

其中与模型交互的prompt如下

Give a question “{q}” and its possible answering passages (most of these
passages are wrong) enumerated as: \n 1.{cq
1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct answering passage.

二、论文中给出的结论

图a,是第一次检索召回的top文档数据,从图上可知,召回10条数据,效果最好。

图b,是验证了每次让模型生成的答案数量。论文给出的结论是,模型每次生成5个答案,效果趋向于稳定和最高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值