分类目录: 《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(Human Input LLM) 缓存LLM的调用结果 加载与保存LLM类、流式传输LLM与Chat Model响应和跟踪tokens使用情况 聊天模型(Chat Models) 基础知识 使用少量示例和响应流式传输 文本嵌入模型 Aleph Alpha、Amazon Bedrock、Azure OpenAI、Cohere等 Embaas、Fake Embeddings、Google Vertex AI PaLM等 提示(Prompts) 基础知识 提示模板 基础知识 连接到特征存储 创建自定义提示模板和含有Few-Shot示例的提示模板 部分填充的提示模板和提示合成 序列化提示信息 示例选择器(Example Selectors) 输出解析器(Output Parsers) 记忆(Memory) 基础知识 记忆的类型 会话缓存记忆、会话缓存窗口记忆和实体记忆 对话知识图谱记忆、对话摘要记忆和会话摘要缓冲记忆 对话令牌缓冲存储器和基于向量存储的记忆 将记忆添加到LangChain组件中</