
文章阅读产生的各种问题
文章平均质量分 94
在阅读文章时额外产生的各种问题!
墨绿色的摆渡人
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文阅读的附录(八):Understanding Diffusion Models: A Unified Perspective(五):逐步加噪评分匹配
Understanding Diffusion Models: A Unified Perspective(五):逐步加噪评分匹配原创 2025-01-27 00:28:49 · 1326 阅读 · 0 评论 -
论文阅读的附录(七):Understanding Diffusion Models: A Unified Perspective(二):公式46的推导
Understanding Diffusion Models: A Unified Perspective(二):公式46的推导原创 2025-01-24 05:53:54 · 1077 阅读 · 0 评论 -
论文阅读的附录(六):Understanding Diffusion Models: A Unified Perspective(一):马尔可夫HVAE的联合分布和后验分布解析
Understanding Diffusion Models: A Unified Perspective(一):马尔可夫HVAE的联合分布和后验分布解析原创 2025-01-21 00:35:29 · 618 阅读 · 0 评论 -
论文阅读的附录(五):Diffusion Reward Learning Rewards via Conditional Video Diffusion:公式1中使用log的含义
在条件熵公式(1)中,log\loglog衡量生成分布的集中性与意外性:通过对数转换,将概率分布转化为信息量。捕捉生成的不确定性:条件熵反映了生成样本在条件下的不确定性,log\loglog是这一度量的核心。优化稳定性:对概率取对数可以避免数值不稳定问题,并提供更平滑的优化目标。通过log\loglog,条件熵成功结合了信息论和生成模型的统计特性。原创 2025-01-19 02:51:00 · 763 阅读 · 0 评论 -
论文阅读的附录(四):Diffusion policy: Visuomotor policy learning via action diffusion:Diffusion Policy 为什么更稳定
论文:《Diffusion policy: Visuomotor policy learning via action diffusion》涉及到的难点!原创 2025-01-11 04:19:14 · 819 阅读 · 0 评论 -
论文阅读的附录(三):Diffusion policy: Visuomotor policy learning via action diffusion:时序扩散 Transformer
论文:《Diffusion policy: Visuomotor policy learning via action diffusion》涉及到的难点!原创 2025-01-10 23:53:11 · 1030 阅读 · 0 评论 -
论文阅读的附录(二):Diffusion policy: Visuomotor policy learning via action diffusion:$\beta_k$
论文:《Diffusion policy: Visuomotor policy learning via action diffusion》涉及到的难点!原创 2025-01-10 18:25:43 · 868 阅读 · 0 评论 -
论文阅读的附录(一):Diffusion policy: Visuomotor policy learning via action diffusion:视觉条件
论文:《Diffusion policy: Visuomotor policy learning via action diffusion》涉及到的难点!原创 2025-01-10 03:51:24 · 1352 阅读 · 0 评论