
python | numpy小记
文章平均质量分 81
介绍python中numpy的各种用法函数以及相应的例子!
墨绿色的摆渡人
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python | numpy小记(十):理解 NumPy 中的 `np.random.multinomial`(进阶)
在多分类任务中,模型通常会输出一个概率分布(softmax 输出)。如果我们想模拟预测结果的随机性,而不是直接选择最大概率类别,可以用。在策略梯度方法(如 REINFORCE、PPO)中,智能体会根据策略网络输出的概率分布来选择动作。,不仅能提升你的数据模拟能力,还能让你的机器学习和强化学习项目更高效、更真实。在模拟概率事件时非常有用,比如估算赌场游戏的输赢概率、市场份额预测等。在 NLP 中,语言模型会给出下一个单词的概率分布。可以从该分布中采样,生成多样化的句子。参数一次性批量生成结果,提高速度。原创 2025-08-10 17:35:40 · 545 阅读 · 0 评论 -
python | numpy小记(八):理解 NumPy 中的 `np.meshgrid`
核心功能从一维的坐标轴向量生成二维(或多维)的坐标网格矩阵。主要目的:为矢量化计算服务,让你能够对整个网格上的所有点进行快速、高效的并行计算,避免使用慢速的Python循环。经典应用:计算二维/三维函数在网格上的值、生成数据用于绘制等高线图和三维表面图。注意事项:留意indexing参数 ('xy'vs'ij'),确保它符合你的计算或绘图需求。原创 2025-07-30 18:07:40 · 1190 阅读 · 0 评论 -
python | numpy小记(七):理解 NumPy 中的 `np.concatenate`:“合并”
在数据科学和深度学习中,我们经常需要将多个数组沿某一个维度拼接(concatenate)成更大的数组。NumPy 提供的 `np.concatenate` 就是执行这种操作的核心函数。本文将从函数签名、参数含义、与其它拼接函数对比、常见用法及示例(含打印输出),帮助你彻底掌握 `np.concatenate`。原创 2025-07-01 01:16:28 · 559 阅读 · 0 评论 -
python | numpy小记(六):理解 NumPy 中的 `np.stack`:“合并”
在数据科学和深度学习的实践中,我们经常需要将多个同形状数组“合并”成更高维的数组,以便批量处理或构建多通道数据。NumPy 提供的 `np.stack` 正是为此设计的:它可以沿着一个新轴(dimension)将若干数组堆叠起来,生成一个维度数 +1 的新数组。本文将从原理、参数、与其他拼接函数的区别、常见用法、示例及输出,帮你彻底掌握 `np.stack` 的使用。原创 2025-07-01 01:16:18 · 1007 阅读 · 0 评论 -
python | numpy小记(五):理解 NumPy 中的 `np.arccos`:反余弦函数
在科学计算与信号处理等领域,经常需要根据已知余弦值反向求角度——这时就用到 NumPy 提供的 **`np.arccos`**(反余弦)函数。下面从函数签名、数学定义、使用示例、注意事项和典型应用等方面,帮你系统地理解并掌握 `np.arccos`。原创 2025-06-30 22:08:33 · 878 阅读 · 0 评论 -
python | numpy小记(四):理解 NumPy 中的 `np.round`:银行家舍入策略
在科学计算与数据处理的过程中,经常需要对浮点数做**四舍五入**操作。NumPy 提供的 `np.round`(别名 `np.around`)函数,能够非常方便地对数组或标量逐元素执行四舍五入,并支持灵活的参数设置。本文将从函数签名、核心参数、舍入规则、示例演示、与 Python 内建 `round` 的区别等多角度,带你深入理解并高效使用 `np.round`。原创 2025-06-30 21:58:57 · 1092 阅读 · 0 评论 -
python | numpy小记(三):理解 NumPy 中的 `np.ceil`:向上取整的利器
在数据分析和科学计算的过程中,我们经常会遇到“向上取整”的需求,比如分页处理、批次划分、坐标修正等。NumPy 中的 `np.ceil` 函数可以进行向上取整操作。原创 2025-04-06 19:30:27 · 609 阅读 · 0 评论 -
python | numpy小记(一):有概率的随机选择列表中的内容(numpy.random.choice)
python中“numpy.random.choice”的使用方法前言一、“numpy.random.choice”前言项目上的需要,需要有概率的随机选择列表中的内容。一、“numpy.random.choice”一开始以为“random.choice”和“numpy.random.choice”是一个函数,后来发现两个函数截然不同!choice(a,size=None,replace=True,p=None)a:如果是一维数组,就表示从这个一维数组中随机采样;如果是int型,就表示原创 2021-07-11 14:37:01 · 539 阅读 · 0 评论 -
python | numpy小记(二):对数组的元素进行循环移动(roll/shift)
python中使用numpy对数组的元素进行循环移动(roll/shift)原创 2025-01-19 15:54:21 · 802 阅读 · 0 评论