
机器学习
文章平均质量分 53
sparksnail
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
线性回归
1.常用矩阵公式 2.线性回归模型形式: 最小二乘法求解 令上式为0,解得: 梯度下降法求解目标函数: 损失函数: 梯度下降对损失函数求导: θ的迭代公式为: 批量梯度下降: 随机梯度下降: 随机梯度下降在计算下降最快的方向时时随机选一个数据进行计算,而不是扫描全部训练数据集。3.模型优缺点优点: 实现简单,计算简单 缺点: 不能拟合非线性数据原创 2017-09-12 15:22:37 · 329 阅读 · 0 评论 -
逻辑回归
sigmoid函数sigmoid函数: 函数图像: 函数的导数: (求导过程很简单,略)逻辑回归模型目标函数:把sigmoid套在线性回归的模型上,得到: 损失函数:假设有n个观测样本,观测值分别为设为给定条件下得到yi=1的概率。在同样条件下得到yi=0的条件概率为。于是,得到一个观测值的概率为: 使用最大似然估计,可以估计出使得概率最大的θ参数。 对上式求对数: 所以逻辑回归的原创 2017-09-12 17:17:37 · 359 阅读 · 0 评论 -
softmax回归
softmax函数总共有k个类别,一个样本属于类别i的概率为:对数似然函数类似逻辑回归,构建softmax的对数似然函数: 损失函数 对损失函数求导: 求解梯度上升 softmax和多个逻辑回归的区别对于选择softmax分类器还是个logistic分类器,取决于所有类别之间是否互斥。 所有类别之间明显互斥用softmax分类器,所有类别之间不互斥有交叉的情况下最好用个logistic分类原创 2017-09-13 15:36:44 · 581 阅读 · 0 评论 -
SVM
线性可分支持向量机支持向量机的基本型 即: 问题可以转化成: 求解方法–最大间隔法: 求解过程使用拉格朗日乘子法,利用拉格朗日对偶性,通过求解对偶问题,得到原始问题的最优解。 构造拉格朗日函数: 原始问题: 对偶问题: 第一步: 首先求解 对w和b求偏导,得: 把求导结果带入L(w,b,α),得: 即: 这样,原式就变成了求解α,使得原创 2017-09-14 16:18:32 · 312 阅读 · 0 评论 -
朴素贝叶斯
贝叶斯定理朴素贝叶斯分类设样本为x,类别为y 有条件独立性假设: 根据贝叶斯定理,得到类别y的后验概率为: 把条件独立假设带入得到: 贝叶斯分类器可以表示为: 因为在分母中,所有的值是相同的,因此贝叶斯分类器最终表示为: 拉普拉斯平滑为了防止概率出现0的情况,加入平滑。 参考: 《统计学习方法》李航原创 2017-09-15 09:29:56 · 262 阅读 · 0 评论 -
EM算法
1.概念概率模型有时候会包含隐含变量,当包含隐含变量时,不能简单地使用极大似然估计直接求解,这时候就需要用到EM算法。EM算法是一种从含有隐含变量的数据中求解极大似然估计的方法。 对数似然函数为: 其中,Z(i)Z(i)Z^{(i)}是隐含变量的值。2.求解为了求解上述对数似然函数,引入隐含变量Z的分布QiQiQ_i QiQiQ_i满足的条件为: 这样,上述对数似然函数...原创 2018-05-13 22:52:46 · 346 阅读 · 0 评论