统计力学中矩阵特征值、对称性破缺与腔方法研究
1. 矩阵元素计算与特征值求解
首先进行矩阵(A)和(B)元素的计算。通过代数运算,最终得到:
(P′ = q^2 - 1)
(Q′ = q^2 - q)
(R′ = q^2 - \int Dz \tanh^4 \sqrt{\hat{q}z})
这完成了计算矩阵(A)和(B)元素的第一步。
接着计算矩阵(A)和(B)的特征值和对应的特征向量。考虑一个(n(n - 1)/2 × n(n - 1)/2)的矩阵(C_{ab,cd}),其结构与(A)和(B)类似,只有三个不同元素(P)、(Q)、(R),具体规则如下:
|条件|元素值|
| ---- | ---- |
| (a = c, b = d) | (P) |
| 恰好两个索引重合 | (Q) |
| 所有索引彼此不同 | (R) |
通过显式构造特征向量来确定特征值:
- 特征向量(\vec{\zeta}_1) :对于所有(a < b),(\zeta_{ab}^1 = \zeta),它是(C_{ab,cd})的特征向量,特征值为(\lambda_1 = P + (2n - 4)Q + \frac{(n - 2)(n - 3)}{2}R),该特征向量是复制对称的。
- 特征向量(\vec{\zeta}_2) :当(a = l)或(b = l)时,(\zeta_{ab}^2 = \zeta);否则(\zeta_{ab}^2 = \varepsilon)。选择(\zeta = (1 - \frac{n}