金融时间序列中的波动率估计与统计模型
在金融领域,准确估计和预测资产回报的波动率与相关性至关重要。不同的模型和方法被用于解决这些问题,每种方法都有其特点和适用场景。
1. 波动率估计方法概述
在金融市场中,有两种主要的方法来估计波动率:基于隐含信息的方法和基于统计模型的方法。
1.1 隐含方法
隐含方法利用期权的当前市场价格数据。隐含波动率包含了市场参与者对标的资产未来可能走势的前瞻性预期。它基于Black - Scholes假设,包括完备市场、无套利、恒定波动率以及标的资产价格遵循几何布朗运动(GBM)连续时间扩散过程。Black - Scholes定价模型假设资产价格回报呈对数正态分布,但实际上,隐含的回报概率分布具有更厚的尾部,呈现出尖峰厚尾的特征。
1.2 统计模型方法
统计模型使用离散时间模型中的资产价格回报历史数据进行波动率估计和预测。这些模型基于时间序列数据,通过分析时间序列数据的统计特性,如给定时间间隔内的均值和方差,来进行预测。
统计方法通常不会事先对基础数据分布做出假设,特别是对于随时间变化的随机数据。然而,为了建立一个稳健的预测模型,常常会对渐近分布(对于非常大的样本量)以及数据生成过程的统计特性(如遍历性、平稳性或非平稳性)做出假设。在模型参数估计时,也需要对分布做出假设,以计算最大似然估计和似然比检验统计量。
此外,还会对回归方程中噪声(误差)项所捕获的抽样误差的基础分布做出假设。在许多模型中,通常假设为独立同分布的正态白噪声过程,认为不同时间的观测值是不相关的。这些假设可以通过如Durbin - Watson等统计检验进行验证。