15、Databricks机器学习运行时的特征工程技术

Databricks机器学习运行时的特征工程技术

在处理大量数据时,特征工程是机器学习和深度学习中至关重要的一环。像Spark SQL和MLlib这样的工具在特征工程中非常有效,Databricks Runtime ML还包含了一些第三方库,如scikit - learn,可用于从数据中提取特征。下面将详细介绍一些常见的特征工程技术及其在PySpark中的实现。

1. 分词器(Tokenizer)

分词是将输入的字符串转换为标记数组的过程。这些标记通常是单个单词,但也可以是一定数量的字符或称为n - gram的单词组合。分词过程可视为特征工程的一项任务,标记的识别基于传递给解析器的特定模式。

在PySpark中,可以使用简单的 Tokenizer 类对字符串输入序列进行分词。以下是将句子拆分为单词序列的代码示例:

from pyspark.ml.feature import Tokenizer
sentenceDataFrame = sqlContext.createDataFrame([
  (0, "Spark is great for Data Science"),
  (0, "Also for data engineering"),
  (1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsDataFrame = tokenizer.transf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值