基于Paillier和Rabin方案的实用公钥密码系统
1. 基于因子分解的新陷门置换
在密码学领域,陷门置换是一种重要的工具。这里我们介绍一种基于因子分解的新的保长陷门置换。此前已知的可证明安全的陷门置换都基于因子分解问题,目前已知的保长且可证明安全的陷门置换仅有Blum - Williams置换和Gong与Harn提出的一种置换。
新的陷门置换定义如下:设 $p$、$q$ 为素数,满足 $p \equiv q \equiv 3 \mod 4$,$n = pq$,$e$ 为正整数且 $\gcd(e, \lambda(n)) = 1$,定义函数 $F_e : Q_n \times Z_n \to Q_{n^2}$ 为 $(r, m) \to r^{2e} + mn \mod n^2$。
可以证明 $F_e$ 是一个定义良好的保长双射:
- 定义良好性 :根据Hensel提升,模 $n^2$ 的二次剩余集可定义为 $Q_{n^2} = {x + yn | x \in Q_n, y \in Z_n}$。若 $c = F_e(r, m) = r^{2e} + mn \mod n^2$,其中 $r \in Q_n$,$m \in Z_n$,显然 $c \mod n = r^{2e} \mod n \in Q_n$,所以 $F_e$ 定义良好。
- 双射性 :只需证明 $F_e$ 是单射,因为从 $Q_{n^2}$ 的另一种定义可知,$Q_n \times Z_n$ 和 $Q_{n^2}$ 的元素个数相同。假设 $F_e(r_0, m_0) = F_e(r_1, m_1)$,则 $r_0^{2e